# **Evolutionary Approach to Security Games with Signaling**

<sup>1</sup>Faculty of Mathematics and Information Science, Warsaw University of Technology



## **Problem definition**

## Security Games with Signaling

Inspiration: prevention of poaching in Africa.

### 2 players: **Defender** and **Attacker**

Defender's units: patrollers, drones

Drone can send one of the following signals:

- weak sending information to patrollers about attack detection
- strong sending information about attack and launch sound/light signals to deter the Attacker

Games on graph – each vertex is target with a set of payoffs.

Defender's strategy: assigning patrollers and drones to targets, signaling strategy. Attacker's strategy: target to attack, signaling reaction.



## Stackelberg Equilibrium

Defender commits to his/her strategy first.

Attacker, knowing the Defender's strategy, chooses his/her strategy. Defender always commits to a mixed strategy.

**Stackelberg equilibrium**: a pair of players' strategies, for which strategy change by any of players leads to his/her result deterioration.

$$(\pi_D^*, R(\pi_D^*)) \in \Pi_D \times \Pi_A$$

 $\pi_D^* = \operatorname{argmax}_{\pi_D \in \Pi_D} U_D(\pi_D, R(\pi_D))$ 

 $R(\pi_D) = \operatorname{argmax}_{\pi_A \in \Pi_A} U_A(\pi_D, \pi_A)$ 

 $G \in \{D, A\}$  – players (Defender, Attacker)  $\Pi_G$  – a set of player's G all mixed strategies  $U_G$  – payoff of player G

## **Game uncertainties**

### Detection uncertainty

A drone may not detect the Attacker even if they are both located in the same target (e.g. conservation drone imagery may be imperfect, particularly given occlusions such as trees).

### Observational uncertainty

The Attacker observes different signal (also no signal) according to matrix  $\Omega$  due to potential occlusions or difficulties viewing the true signal.

P[y|x] – probability of recognizing signal x under condition of the true signal y.

$$\Omega = \begin{bmatrix} P[n|n] & P[n|\sigma_0] & P[n|\sigma_1] \\ P[\sigma_0|n] & P[\sigma_0|\sigma_0] & P[\sigma_0|\sigma_1] \\ P[\sigma_1|n] & P[\sigma_1|\sigma_0] & P[\sigma_1|\sigma_1] \end{bmatrix}$$

## **Evolutionary algorithm for Security Games with Signaling (EASGS)**

## Solutions encoding

 $e = (V_p, V_s, V_r)$  - pure strategy  $V_p$  - a set of vertices with assigned patrollers,  $V_s$  - a set of vertices with assigned drones,  $V_r$  - reallocation plan, a set of vertices (connected with  $V_p$ ), to which each patroller moves if no adversaries are observed.

 $q_i^j \in [0,1]$  is the probability of playing strategy  $e_i^j$ ,  $\sum_{i=1}^{d_j} q_i^j = 1$ 

## **Evolutionary operators**

Adam Żychowski<sup>1</sup> Jacek Mańdziuk<sup>1</sup> Elizabeth Bondi<sup>2</sup> Aravind Venugopal<sup>3</sup> Milind Tambe<sup>2</sup> Balaraman Ravindran <sup>3,4</sup>

<sup>2</sup>Center for Research on Computation and Society, Harvard University <sup>3</sup>Robert Bosch Centre for Data Science and AI, IIT Madras <sup>4</sup>Department of Computer Science and Engineering, IIT Madras

 $CH_j = \{(e_1^j, q_1^j), \dots, (e_i^j, q_i^j), \dots, (e_{d_i}^j, q_{d_i}^j), \boldsymbol{\Psi}_{\boldsymbol{j}}^{\boldsymbol{\theta}}, \boldsymbol{\Phi}_{\boldsymbol{j}}^{\boldsymbol{\theta}}\}$ 

 $\theta \in \{\bar{s}, s^+, s^-\}$  - drones allocation states:

 $\bar{s}$  - no patroller is in the drone's neighbourhood,

 $s^+$  - a patroller is planned to visit drone's vertex in the reaction stage,

 $s^-$  - no patroller will visit drone's vertex in the reaction stage but there is at least one patroller in neighbourhood who can respond

 $\Psi_{j}^{\theta} = [\Psi_{j,1}^{\theta}, \Psi_{j,2}^{\theta}, \dots, \Psi_{j,\mathcal{N}}^{\theta}]$  - signaling strategy in case of attack detection  $\Phi_{j}^{\theta} = [\Phi_{j,1}^{\theta}, \Phi_{j,2}^{\theta}, \dots, \Phi_{j,\mathcal{N}}^{\theta}]$  - signaling strategy in case of no attack detection



## 3 mutation types:

- random allocation/reallocation modification,

- random probability change,

- coverage improvement.

**Crossover** combines pure strategies with halved probabilities, averaging signaling probabilities. Evaluation based on game rules (including detection and observational uncertainties).



number of vertices:  $n \in [10, 100]$ number of patrollers:  $k_s = \sqrt{\frac{n}{2}}$ number of drones:  $k_d = \frac{2}{3}n - k_s$ 





sparse modera dense locally-de



- results close to optimal

Results

EASGS obtained the best result for 200 out of 342 games.

|      | SBP          | SBP+W        | m-CombSGPO   | EASGS        |
|------|--------------|--------------|--------------|--------------|
| е    | -86.68 (84%) | -86.01 (92%) | -419.86 (0%) | -91.32 (6%)  |
| ate  | -75.01 (2%)  | -72.75 (36%) | -255.73 (0%) | -69.92 (62%) |
| 2    | -58.72 (2%)  | -57.98 (34%) | -149.14 (0%) | -51.47 (64%) |
| ense | -60.68 (4%)  | -57.80 (26%) | -340.65 (0%) | -54.36 (70%) |
|      |              |              |              |              |

Table 1. Averaged Defender's payoff across all benchmark games.

Figure 2. Memory consumption.

## Conclusions

new evolutionary method for Security Games with Signaling

• much better time and memory scalability than competitive methods • viable alternative to exact method and state-of-the-art heuristics