
Evolution of Strategies in Sequential Security Games
Adam Żychowski

Faculty of Mathematics and Information Science
Warsaw University of Technology

a.zychowski@mini.pw.edu.pl

Jacek Mańdziuk
Faculty of Mathematics and Information Science

Warsaw University of Technology
j.mandziuk@mini.pw.edu.pl

ABSTRACT
In this paper we introduce a generic approach to solving Sequen-
tial Security Games (SGs) based on Evolutionary Algorithms. The
method (named EASG) is general and largely game-independent,
which allows for its application to a wide range of SGs with only
slight adjustments. The efficacy of EASG is verified on 3 types of
games from different domains: patrolling, surveillance, and cyber-
security. Comprehensive experiments performed on more than 300
test games demonstrate robustness and stability of EASG, mani-
fested by repetitively achieving optimal or near-optimal solutions.
The main advantage of EASG compared to alternative approaches
to solving SGs is its time efficiency. EASG finds high-quality solu-
tions with approximately linear time scalability and can therefore
be applied to solving SG instances which are beyond capabilities of
the state-of-the-art exact methods. Due to anytime characteristics,
EASG is particularly well suited for time-critical applications.

KEYWORDS
Evolutionary algorithm; Security Games; Stackelberg equilibrium

ACM Reference Format:
Adam Żychowski and Jacek Mańdziuk. 2021. Evolution of Strategies in
Sequential Security Games. In Proc. of the 20th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2021), Online, May 3-7,
2021, IFAAMAS, 14 pages.

1 INTRODUCTION
Game theory (GT) offers mathematically justified solutions to many
practical problems arising in various domains, e.g. economics [10],
biology [31], politics [30] or social networks [38]. One of the fast-
growing GT areas is security management (e.g. border controlling,
cybersecurity, police surveillance, anti-terrorism policy, patrolling
schedules, etc.). The majority of these applications base on the
concept of Security Games.

Security Games (SGs) are typically two-player StackelbergGames
(StGs) [42]. One of the players - the leader (a.k.a. the Defender in
SGs) commits to a strategy first and then the other player - the
follower (a.k.a. the Attacker in SGs) chooses their strategy - based
on the already announced leader’s strategy. Such a sequence of
decisions introduces asymmetry of information access, favoring
the follower. The above concept fits certain real-life security-related
scenarios in which the Attacker can surveil the guards (playing the
Defender’s role) patrolling some critical area and discover / deduct
their patrolling strategy.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3-7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

The list of successfully deployed real-world applications of SGs
includes the scheduling system for Los Angeles International Air-
port canine patrols [15], the PROTECT system which randomizes
schedules of US Coast Guard’s resources in Boston harbour [36],
the TRUSTS system for scheduling patrols for fare inspection in
Los Angeles Metro system [45], or the PAWS system to prevent
poaching and protecting wildlife in Queen Elizabeth National Park
in Uganda [44]. Please consult a recent survey paper [37] for other
examples.

In SGs the goal is to find a pair of players’ strategies that corre-
spond to the Stackelberg Equilibrium (StE) [27]. Since the Attacker
is aware of the opponent’s strategy in advance, their strategy is
a consequence of the Defender’s strategy (they choose a strategy
which provides them the highest possible payoff). Hence, the prob-
lem of finding StE in SGs can be reduced to finding an optimal
mixed Defender’s strategy, which is still NP-hard [9].

On a general note, there are two major types of SGs solution
methods: exact and approximate. Majority of the proposed exact ap-
proaches employ Mixed-Integer Linear Programming (MILP) [4, 15,
22, 41] and, consequently, suffer from poor time scalability which
hinders their application beyond a certain level of game’s complex-
ity. Approximate methods, on the other hand, offer much better
scalability but at the cost of finding close-to-optimal solutions [6, 17–
19, 23, 26, 43]. This paper follows the latter approach and adopts Evo-
lutionary Algorithms metaheuristic [2], which has proven efficient
in solving other types of bi-level optimization problems [3, 8, 11].

Evolutionary Algorithms (EAs) are inspired by the process of (bi-
ological) evolution. Each member of a population in EA represents
a candidate (valid) solution. In the iterative process of creating new
generations three evolution-related operations: mutation, crossover
and selection are performed. Despite the lack of rigorous proofs of
convergence to the optimal solution, EAs - thanks to their exper-
imentally proven efficiency - have been widely applied to a wide
range of real-life optimization problems, e.g. [7, 13, 29, 46].

In the context of GT, Sefrioui et al. [35] applied co-evolutionary
algorithm for computing the Nash equilibrium on a fluid dynam-
ics problem and compared the results with Pareto Genetic Algo-
rithms [12]. A similar approach, relying on colonial competitive
algorithm [1], was proposed in [33]. There were also certain at-
tempts of using EAs for finding StE [5, 34, 39], however, all of them
were designed for simple one-step games. To our knowledge, except
for the initial short version of this paper [47], the only application of
EAs to sequential SGs was proposed in [20]. This method, however,
is tailored to specific genre of SGs, i.e. SGs with targets moving on
a plane [20].

1.1 Contribution
The main contribution of this paper is an introduction of the first
evolutionary approach to finding near-optimal solutions of a wide

range of SGs in a computationally efficient manner. The method,
abbreviated as EASG (Evolutionary Algorithm for Security Games),
is domain-independent and flexible, i.e. applicable to various SGs
formulations (one-step, multi-step, general-sum, with limited ob-
servability, with bounded rationality, etc.) with little adjustments
only. Furthermore, due to anytime characteristics, EASG is specifi-
cally well suited for time-critical applications in SG domain.

EASG is tested on three types of SGs, where it demonstrates
optimal or close-to-optimal performance, while outperforming the
competitive approaches in terms of time scalability.

2 PROBLEM DEFINITION
We consider a sequential 𝑛-step StG with two players: the Defender
(𝐷) and the Attacker (𝐴).

In StG a pure strategy of the player is defined as an assignment
of one action to each potentially reachable state of the game. Please
observe that the same action of the player may lead to several
reachable states depending on the opponent’s action selection [25].
Let’s denote a set of all pure strategies of player 𝑝 by Σ𝑝 . A mixed
strategy 𝜋𝑝 ∈ Π𝑝 , where Π𝑝 is a set of all possible mixed strategies
of player 𝑝 , is a probability distribution over Σ𝑝 .

In StG the Defender commits to their strategy 𝜋𝐷 ∈ Π𝐷 (proba-
bility distribution of their pure strategies) and then the Attacker,
being aware of 𝜋𝐷 , determines their strategy 𝜋𝐴 . Let’s denote by
𝑈 𝑝 (𝜋𝐷 , 𝜋𝐴) an expected utility value of player 𝑝 as a result of the
game played according to mixed strategies 𝜋𝐷 and 𝜋𝐴 . Stackelberg
Equilibrium can be formally defined as a pair (𝜋𝐷 , 𝜋𝐴) satisfying
the following equations:

𝐵𝑅(𝜋𝐷) = arg max
𝜋𝐴∈Π𝐴

𝑈𝐴 (𝜋𝐷 , 𝜋𝐴) (1)

𝜋𝐷 = arg max
𝜋𝐷 ∈Π𝐷

𝑈𝐴 (𝜋𝐷 , 𝐵𝑅(𝜋𝐷)) (2)

Equation (1) defines the Attacker’s best (optimal) response 𝐵𝑅(𝜋𝐷)
to the Defender’s strategy 𝜋𝐷 while eq. (2) selects the best De-
fender’s strategy against the optimal Attacker’s response. In order
to avoid ambiguity, if there exist more than one best Attacker’s
response, Strong Stackelberg Equilibrium (SStE) was defined [27]
in which the Attacker, among all their best responses (with the
same highest utility for them), selects the one with the highest
Defender’s utility, i.e. breaks ties in favor of the Defender. In this
paper SStE version of StE is considered.

At the beginning of the game, both players choose their strate-
gies (first the Defender and then the Attacker), which are played
throughout the game, i.e. cannot be altered by the player is subse-
quent steps. In effect, in each time step (𝜏1, . . . , 𝜏𝑛) player 𝑝 performs
an action 𝑎

𝑝

𝑖
(𝑝 ∈ {𝐷,𝐴}, 𝑖 = 1, . . . , 𝑛) according to their strategy,

from the set of available actions𝑀 (𝑠𝑝
𝑖
), where 𝑠𝑝

𝑖
is a state of player

𝑝 in time step 𝜏𝑖 . State 𝑠
𝑝

𝑖
is determined by all previous player’s

actions, their initial position and the opponent’s actions. Players
perform actions (make moves) simultaneously, and are not aware
of the opponent’ current and past actions.

For each game state 𝑠 there are four predefined payoffs 𝑈 𝑘 (𝑠)
(𝑘 ∈ {𝐴+, 𝐴−, 𝐷+, 𝐷−}) representing theAttacker’s reward (𝑈𝐴+ (𝑠)),
their penalty (𝑈𝐴− (𝑠)), the Defender’s reward (𝑈𝐷+ (𝑠)) and their
penalty (𝑈𝐷− (𝑠)), resp. Some of the states (usually those with high
𝑈𝐴+ (𝑠) values) are distinguished and called the targets.

If in any time step 𝜏𝑖 (𝑖 = 1, . . . , 𝑛):
• The Attacker and the Defender move to the same state (say
𝑠𝑖), then the game ends (the Attacker is intercepted) and the
players receive payoffs𝑈𝐴− (𝑠𝑖) and𝑈𝐷+ (𝑠𝑖), resp.

• The Attacker reaches any of the targets (say 𝑠 𝑗) and is not
intercepted, then the game ends and the respective payoffs
are equal to𝑈𝐴+ (𝑠 𝑗) and𝑈𝐷− (𝑠 𝑗).

Otherwise, the game lasts for 𝑛 steps and ends with neutral payoffs.

3 STATE-OF-THE-ART APPROACHES
The vast majority of hitherto approaches to solving StG were fo-
cused on one-step game formulations [37] and either couldn’t be
applied to the multi-step case considered in this paper, or their
application would be highly inefficient. In the literature there is just
a handful of methods devoted to multi-step extensive-form StG, all
of them developed in the last few years.

The first notable approach (BC2015) was introduced by Bos̆anský
and C̆ermák in 2015 [4]. The authors extended a very popular MILP-
based method DOBBS [32] to extensive-form games and introduced
a novel algorithm for computing SStE, able to exploit the underlying
structure of sequence-form games. The method is designed for
non-zero-sum games and reduces the size of a linear program by
transforming an extensive-form game into its equivalent sequence-
form representation. In effect, the size of a linear program is reduced
from exponential (as in DOBBS) to linear with respect to the game
tree size, but still exponential with respect to the game length. An
exact formulation of MILP utilized in BC2015 can be found in [4].

Another approach to the exact computation of SStE for two-
player extensive-form general-sum games was proposed by C̆ermák
et al. [41]. The method (henceforth referred to as C2016) utilizes a
correlated version of SStE known as Stackelberg Extensive-Form
Correlated Equilibrium (SEFCE). In SEFCE, the Defender can send
signals to the Attacker whomust follow these signals in their choice
of the best response. C2016 relies on a linear program for computing
SEFCE and then modifies it by iteratively restricting the signals the
Defender can send to the Attacker and thus converging to SStE. In
the experimental evaluation presented in [41], C2016 was superior
to BC2015 in terms of time efficiency.

One of the recent heuristic approaches to SStE approximation
was theMixed-UCTmethod [16, 18] which incorporates a variant of
Monte Carlo Tree Search, known as Upper Confidence Bounds ap-
plied to trees [24]. The authors [18] subsequently proposed another
UCT-based approach - O2UCT [19, 21] which relies on a guided
sampling of the Attacker’s strategy space interleaved with finding
(using double-oracle method [14]) a feasible Defender’s strategy for
which the just-sampled Attacker’s strategy is the optimal response.
Experimental evaluation of O2UCT shows the method’s ability to
find optimal or close-to-optimal solutions for various types of test
games and better time-scalability than both the above mentioned
exact MILP methods.

Another approximate method (denoted by CBK2018) [6] is a
heuristic time-optimized MILP approach which constructs a smaller
game tree representation with a specific abstraction structure called
gadgets. The method significantly reduces the Defender’s strategy
space and therefore, brings down computation time requirements,

however at the cost of loosing theoretical MILP property of conver-
gence to the optimal solution. A diminished game is solved with
the C2016 method.

Four algorithms summarized above (two exact: BC2015, C2016
and two approximate: O2UCT, CBK2018) are state-of-the-art ap-
proaches to solving multi-step extensive-form StG and will be used
as reference methods in the experimental evaluation of EASG.

4 EVOLUTIONARY ALGORITHM FOR
SECURITY GAMES

Initially, a population of 𝑝𝑠𝑖𝑧𝑒 individuals (chromosomes) is ran-
domly generated. Each individual represents a potential solution -
Defender’smixed strategy. In each subsequent generation, crossover
and mutation operators are applied to randomly selected chromo-
somes from the current population, which is then followed by a
selection procedure that promotes individuals to the next gener-
ation based on their evaluation (fitness). The fitness of a given
chromosome is calculated as the Defender’s payoff (when the De-
fender plays a mixed strategy represented by that chromosome)
against an optimal Attacker’s response (an Attacker’s pure strategy
yielding the highest payoff for them).

The above procedure is executed until the best (found so far)
Defender’s payoff does not change within 𝑛𝑐 iterations or the limit
for the number of generations 𝑛𝑔 is exceeded. Please refer to sup-
plementary material1 for the algorithm’s flowchart.

4.1 Chromosome representation
Each chromosome (individual) represents some Defender’s mixed
strategy (a candidate SStE solution) in the form of a vector of pure
strategies 𝜋𝑞

𝑖
and their respective probabilities 𝑝𝑞

𝑖
:

𝐶𝐻𝑞 = {(𝜋𝑞1 , 𝑝
𝑞

1), . . . , (𝜋
𝑞

𝑙𝑞
, 𝑝

𝑞

𝑙𝑞
)},

𝑙𝑞∑
𝑖=1

𝑝
𝑞

𝑙𝑞
= 1, (3)

where 𝑞 is the index of the chromosome in the population, 𝑙𝑞 is
the length of chromosome 𝐶𝐻𝑞 , i.e. the number of pure strategies
included in the mixed strategy represented by that chromosome.
A particular form of pure strategy depends on game specificity. In
the most common case, a pure strategy is represented as a list of
Defender’s actions in consecutive time steps.

4.2 Initial population
Initial population contains solely pure strategies, i.e. ∀𝑞 𝑙𝑞 = 1 ∧
𝑝
𝑞

1 = 1. These strategies are generated randomly in the following
way. For each strategy, in each time step the next action is selected
uniformly from all actions available in a given state. This proce-
dure is independently executed for each chromosome in the initial
population, i.e. 𝑝𝑠𝑖𝑧𝑒 times.

4.3 Crossover
In the first step of crossover operation, a subset of 𝑝𝑐 · 𝑝𝑠𝑖𝑧𝑒 in-
dividuals are randomly selected from the population, where 𝑝𝑐 is
crossover rate. Then, individuals from this subset are randomly
paired (in the case of an odd number of individuals, a randomly
chosen one is removed). From each pair of individuals, one new
1www.mini.pw.edu.pl/~mandziuk/PRACE/AAMAS-21.pdf

offspring chromosome is created in the following way. All pure
strategies from the parent chromosomes are merged into one mixed
strategy with their probabilities halved. Repeating this operation
unconditionally (in consecutive generations) would lead to chromo-
somes with large numbers of pure strategies with tiny probabilities.
Thus, each pure strategy 𝜋

𝑞

𝑖
in this newly created chromosome,

except for the one with the highest probability, is removed with
probability (1− 𝑝

𝑞

𝑖
)2 (i.e. the lower the probability of a strategy the

higher its chance for being deleted). Afterwards, probabilities of
the remaining pure strategies are normalized so as to sum up to 1.
The role of the crossover operator is to enhance the exploitation
aspect of the EA by means of mixing strategies found so far.

4.4 Mutation
Mutation operator is applied to each chromosome independently
with probability 𝑝𝑚 . First, one pure strategy in the chromosome is
randomly chosen. Then consecutively, starting from a randomly
selected time step 𝑡𝑖 up to the last time step 𝑡𝑛 , an action in a
considered time step 𝑡 𝑗 , 𝑖 ≤ 𝑗 ≤ 𝑛 is changed to an action uniformly
chosen among all actions available in the corresponding game state.
The role of the mutation operator is to boost exploration of the new
areas of the search space.

4.5 Evaluation
The fitness of a chromosome is calculated as a Defender’s payoff
when they play a mixed strategy encoded in that chromosome.
Since it is proven [9] that in StG there always exists at least one
pure strategy of the follower which is their best response to the
leader’s strategy (pure or mixed), then it is sufficient to iteratively
check all pure Attacker’s strategies and select the one with the
highest Attacker’s payoff (additionally breaking ties in favor of
the Defender - SStE condition). The Defender’s payoff against the
best Attacker’s response found in the above described way is then
computed and returned as a chromosome fitness value.

4.6 Selection
In the first step of the selection procedure, 𝑒 individuals from the
current population with the highest fitness values (including those
created by mutation or crossover operations) are unconditionally
promoted to the next generation population. These individuals
are called elite and transmit the top ranked solutions found so far
through consecutive generations.

Next, a binary tournament is iteratively executed until the next
generation population is filled with 𝑝𝑠𝑖𝑧𝑒 individuals. In each tour-
nament, two chromosomes are sampled with replacement from the
pool of currently available individuals (including those affected by
crossover and/or mutation). The chromosome, within the pair, with
higher fitness is promoted to the next generation with probability
𝑝𝑠 . Otherwise, the lower-fitted one is promoted.

5 EXPERIMENTAL SETUP
5.1 Benchmark games
Properties of EASG were tested on 3 sets of multi-step games with
variable characteristic: Warehouse Games [18], Search Games [4],
and FlipIt Games [40], which were previously used in the literature

www.mini.pw.edu.pl/~mandziuk/PRACE/AAMAS-21.pdf

for evaluation of various state-of-the-art SG approaches. While all
3 types of games are defined on graphs, their rules, properties and
related challenges are vastly different, which makes them a truly
diverse benchmark set.

5.1.1 Warehouse Games. The Warehouse Games (WHG) proposed
in [18] are played on graphs which mimic the layouts of warehouse
buildings. Vertices represent storage rooms and corridors. Attacker
and Defender start in fixed (different) vertices. In each time step,
each player can move to any of the neighboring vertices (directly
connected through an edge) or stay in the currently occupied vertex.
The game ends in any of the following three cases:

a) players meet in the same vertex, which means interception
of the Attacker - a negative payoff for the Attacker and a
positive one for the Defender,

b) the Attacker reaches one of the distinguished vertices (tar-
gets) and is not intercepted - the Attacker receives a positive
payoff and payoff of the Defender is negative,

c) none of the two above cases takes place in any of the 𝑛 time
steps - the payoff equals 0 for both playing sides.

The payoff structure is non-zero-sum. A more detailed description
of these benchmark games is presented in [18]. The number of steps
in WHG varies between 3 and 8 that leads to the game trees of the
sizes from 102 to 108 nodes. For each number of steps 𝑡 = 3, . . . , 8,
25 games were tested (150 different games in total). All test games
were downloaded from the project website [28].

InWHG an action is in the form of a decision about the next node
to be visited, hence in EASG application to WHG a chromosome
contains a list of nodes to be visited in consecutive time steps.

5.1.2 Search Games. The Search Games (SEG) [4] are played on
directed graphs. The Attacker’s goal is to reach one of the distin-
guished target vertices, starting from a fixed initial vertex. Contrary
to WHG, in SEG Defender controls several units and furthermore,
these units cannot move freely on the entire graph but each of them
has a subset of vertices assigned which it is allowed to visit.

Another crucial difference compared to WHG is the property of
partial observability. Namely, the Attacker leaves traces in visited
vertices which can be discovered by a Defender’s unit if they visit
the node after the Attacker’s presence (in one of the subsequent
time steps). However, the Attacker has the ability to erase such a
trace if they spend an additional time step in a given vertex (i.e.
stay in this vertex in two or more consecutive time steps).

The end-of-game conditions are the same as in the WHG - the
Defender obtains a positive payoff for catching the Attacker, or the
Attacker is rewarded for reaching a target vertex without being
intercepted, or the game ends with neutral payoffs after a certain
number of time steps.

In total, 90 games with 4, 5, and 6 time steps, played on 3 different
graph structures proposed in [4] were used in the evaluation process.
Attacker’s and Defender’s penalties were set to −1 and for each
graph structure 10 random distributions of rewards were sampled
from interval [1, 2].

In order to be able to solve SEG instances the EASG chromosome
representation needs to be extended. Formally, let’s denote by L𝑢

𝑣𝑡

a list of nodes visited in consecutive time steps by unit 𝑢 in the
case of trace discovery in node 𝑣 at time step 𝑡 and by L𝑢

∅ a list
of nodes visited by unit 𝑢 in the case of no trace discovery during

the whole gameplay. Then, the Defender’s pure strategy 𝜋𝐷 in
SEG is of the following form: 𝜋𝐷 = {L𝑢

𝑣𝑡 , 𝑢 ∈ 𝐷𝑢 , 𝑣 ∈ 𝑉 , 𝑡 ∈
{1, · · · , 𝑛}} ∪ {L𝑢

∅, 𝑢 ∈ 𝐷𝑢 }, where 𝐷𝑢 is a set of Defender’s units,
𝑉 is a set of graph vertices, 𝑛 is the number of game steps.

Each pure strategy represents one of possible compound scenar-
ios. For each Defender’s unit, such a scenario is related to either
discovering or not (by that unit) a trace in any particular vertex, in
any particular time step during the entire game. A set of such pure
strategies with assigned probabilities defines a mixed strategy for
the Defender, represented by a chromosome (cf. eq. (3)).

5.1.3 FlipIt Games. The FlipIt Games (FIG) [40] were initially pro-
posed for evaluation of CBK2018 method [6] and refer to cyberse-
curity settings in which the Attacker attempts to gain control over
certain resources (e.g. servers, hubs, PCs) and the Defender may
take actions to restore their control of the infected units.

The game is played on a directed graph for a fixed number of
time steps. In each step, each of the players selects a node he/she
attempts to take control of (to flip the node). Only some of the nodes
(so-called entry nodes) are publicly accessible and the Attacker is
obliged to start gaining control and penetrate the network from
one of these nodes (in other words the only possible Attacker’s
action in the first step is selection of one of the entry nodes). A flip
action is successful if the player controls also at least one of the
preceding nodes (or it is the entry node with no predecessors) and
the current owner of the selected node does not take the flip action
in this node in the same time step. Successful flip action results in
gaining control on the flipped node.

At the beginning of the game, all nodes are controlled by the
Defender. Each node has assigned a reward for controlling it, and
a cost of its flip attempt. The final player’s payoff is the sum of
rewards from all nodes controlled by them after each time step
(nodes controlled in multiple steps count multiple times), decreased
by the costs of all flip attempts (either successful or failed).

In the experiments, 60 FIG instances played on 3 different graph
structures proposed in [6] were used. For each graph, 5 different
payoffs structures were randomly drawn. The number of time steps
was set to 3, 4, 5 or 6. The experiments were performed in No-Info
game variant [6] in which players have no information about the
results of their actions - they are not aware of whether or not their
flip action succeed and, therefore, their strategy is independent of
the opponent’s actions.

FIG are solved with the same EASG settings as in the case of
WHG, with no specific adaptation. In particular, strategies are rep-
resented in a chromosome as lists of nodes which the Defender
would attempt to flip in consecutive time steps.

5.2 EASG parametrization
EASG parameters were tuned on 50 WHG with 5 and 6 steps (ex-
cluded from the final tests). The initially selected sets of parameter
values are presented in Table 1. EASG was run 5 000 times, in each
case with a random selection of parameters (from Table 1) and a
randomly chosen game. Figures. 1a- 1d present Defender’s payoff
and computation time for the respective tested parameter averaged
across all trails. Based on these outcomes the final parameter val-
ues (bolded in Table 1) were chosen, taking into account both the
expected payoff and the running time.

Table 1: Parameter values selected for the tuning process. Fi-
nally recommended values are bolded.

parameter symbol value

population size 𝑝𝑠𝑖𝑧𝑒 10, 20, 50, 100, 200, 500, 1000, 2000, 5000
generations 𝑛𝑔 1000
generations with
no improvement 𝑛𝑐 20
mutation rate 𝑝𝑚 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
crossover rate 𝑝𝑐 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
selection pressure 𝑝𝑠 0.6, 0.7, 0.8, 0.9, 0.95, 1
elite 𝑒 2

Figure 1a shows that an increase of population size results in
higher Defender’s payoffs since more individuals can explore strat-
egy space and consequently the higher number of potential solu-
tions is considered. For small values (10 ≤ 𝑝𝑠𝑖𝑧𝑒 ≤ 100) a steep
increase of the expected payoff can be observed which subsequently
flattens. Computation time scales approximately linearly with 𝑝𝑠𝑖𝑧𝑒 .

A relation between the Defender’s payoff and mutation rate is
presented in Fig. 1b. Mutation is a key element of the EA process
and without it (𝑝𝑚 = 0) the Defender’s payoff deteriorates drasti-
cally. On the other hand, too high mutation rate also entails payoff
decrease, since the process is too disordered - the majority of strate-
gies are randomly changed in each generation. Computation time
naturally grows along with the mutation rate increase due to the
increasing number of chromosome modifications, but the increase
is not as significant as in the case of population size (Fig. 1a).

Similarly to mutation, crossover is recognized as a critical op-
erator in EA and its removal (𝑝𝑐 = 0) causes significant payoff
decrease (Fig. 1c). At the same time, differences among payoffs for
all other (positive) crossover rate values are not significant. Clearly,
the higher the 𝑝𝑐 the more crossover operations, and consequently
the higher computation time, but the time increase is not steep.

Selection pressure 𝑝𝑠 < 0.5 would mean that weaker individuals
are more likely to be chosen, hence only 𝑝𝑠 > 0.5 were tested.
The best results were obtained for 𝑝𝑠 = 0.9 (see Fig. 1d). Since 𝑝𝑠
does not affect the number of EASG operations, computation time
remains approximately constant across all tested values of 𝑝𝑠 .

6 EXPERIMENTAL EVALUATION OF EASG
EASG is evaluated from four perspectives: convergence, results
quality, stability, and time scalability. All presented results were
obtained in 30 independent runs per game instance, with parameters
and implementation setup discussed in the previous section. In total
EASG assessment was based on 9 000 trials (150 WHG, 90 SEG and
60 FIG, each tested 30 times). All tests were run on Intel Xeon
Silver 4116 @ 2.10GHz with 256GB RAM. The source code can be
downloaded from our project website [28].

6.1 Convergence
Figure 2 visualizes two typical convergence characteristics of EASG.
The payoffs of random strategies in the initial population are usu-
ally centered around one (left figure) or two (right figure) values.
In subsequent generations the payoffs are more scattered but, gen-
erally, the mean Defender’s payoff increases in time, which means

that the entire population moves towards the areas with higher
payoffs. At the same time, some low-payoff individuals exist in
practically all generations due to the use of mutation operator that
leads to the exploration of new strategies.

In none of the experiments EASG attained the maximum number
of generations 𝑛𝑔 (set to 1 000) and in all runs terminated because
of the other stopping condition - no improvement of the best-found
solution in consecutive 𝑛𝑐 generations (set to 20).

Figure 3a presents a histogram of the numbers of generations in
all experiments. The maximum value of 181 was achieved in one
of the 8 step WHG instances. In more than half of the cases, the
number of generations was less than 30, which means that the final
solution was found within the first 10 generations. This observation
supports the claim about fast and stable convergence of EASG.

It can be proven that multiple application of proposed operators
can, in principle, lead to any arbitrary solution. In other words,
given enough time, any mixed strategy can potentially be achieved
through repeated application of these operators, independently of
the initial population selection.

6.2 Results quality
EASG as an approximate algorithm does not guarantee finding
optimal solutions. However, experimental evaluation shows that in
the majority of the cases the method yields optimal SStE strategies,
and in the rest of them, a distance to the optimal solution is narrow.

In order to calculate the optimal solutions for considered game
instances, both exact methods (BC2015 and C2016) were run with
the limit of 200h per game. If none of the methods were capable of
finding the SStE strategy for the Defender within the allotted time,
the game was excluded from the evaluation of results quality. In
effect, 100 WHG (out of 150), 60 SEG (out of 90) and 45 FIG (out of
60) instances were used in the EASG quality assessment.

A histogram of the differences between the optimal solution
and the one provided by EASG in all runs, across all tested game
instances with known optimal solutions is presented in Fig. 3b.

Please note that FIG final payoffs are summed over all controlled
vertices, in all time steps. Hence, to assure a direct comparability
with the results achieved for other game types, they were normal-
ized to [−1; 1], i.e. the lowest and the highest possible Defender’s
payoffs (computed by the exact method) were mapped to −1 and 1,
resp.

6.2.1 WHG. In the case of WHG, both exact methods were able
to calculate the SStE for 100 games with 3 − 6 time steps. In all
tests with larger games (7 − 8 steps) the solution could not be
reached due to extensive time requirements. In 72 out of 100 games
EASG obtained optimal solutions. The mean difference between the
EASG results and the optimal ones equaled 0.0013, and the highest
difference equaled 0.0127 (3.7% of the possible payoff range).

6.2.2 SEG. For SEG, optimal solutions are known for 60 games
with 4 and 5 steps out of which EASG found optimal strategies
in 28 cases (47%). The average divergence from the optimal re-
sults equaled 0.0253 with the highest value of 0.0955 (12.2% of the
possible payoff range).

In spite of satisfying results, it should be noted that they are
noticeably worse than those for WHG. The reason for that is most

(a) Population size (𝑝𝑠𝑖𝑧𝑒). (b) Mutation rate (𝑝𝑚). (c) Crossover rate (𝑝𝑐). (d) Selection pressure (𝑝𝑠).

Figure 1: The average Defender’s payoff (circles) and computation time (squares) with respect to the main steering parameters
of EASG, calculated during the parameter tuning phase.

Figure 2: Typical EASG performance characteristics. Figures
present payoffs of all chromosomes in consecutive genera-
tions for two sample games, resp. Dashed lines denote op-
timal solutions (Defender’s payoffs in SStE), solid curves -
the average payoffs across all individuals (in a given genera-
tion).

(a) (b)

Figure 3: (a): The number of generations (across all tests)
before EASG termination. (b): Differences between optimal
Defender’s payoffs and payoffs obtained by EASG (for all
games with known optimal solutions).

probably much larger strategy representation - SEG require strate-
gies for several (more than one) Defender’s units, additionally with
specific variants for the cases of discovering traces, so the effective
strategy search space is much wider than that of WHG.

In order to verify this hypothesis, additional experiments with
bigger populations were executed. If the reason for a relative deteri-
oration of results is indeed SEG’s larger strategy space and reacher
solution representation, increasing population size should cause a
more extensive search of the strategy space and yield better results.
The outcomes of these experiments, presented in Figure 4a, con-
firm that with greater populations EASG was able to find optimal

solutions for a higher percentage of SEG instances, albeit at the
cost of computation time increase.

6.2.3 FIG. The third set of games - FIG are also recognized as a
challenging task for SGs solution methods due to their extensive
search space. Please note that FIG game trees grow very fast even
for small graphs since in each step (except for the first one in
which some restrictions on the Attacker’s choice apply) any of the
two players can attempt to flip any of graph vertices (not only a
successor of his/her current position). For a graph with 𝑛𝑣 vertices,
in each non-initial step, each of the players has 𝑛𝑣 available actions,
so the number of nodes in a game tree exceeds 𝑛2𝑛−1

𝑣 , where 𝑛 is
the number of steps.

Despite large strategy space, EASG managed to achieve optimal
solutions in 73% of the cases (exact methods were capable of finding
solutions for 45 test games, out of which EASG yielded the same
solutions for 33 games). The average divergence from the optimal
results (normalized in a way described above) equaled 0.0087 with
the highest value of 0.0321 (6.4% of the possible payoff range).

The quality of results for FIG is comparable to that for WHG and
higher than in the case of SEG. Again, the reason for this results
disparity is attributed to a much complex chromosome representa-
tion in SEG. While in FIG and WHG solutions (Defender’s mixed
strategies) are encoded straightforwardly, in SEG each chromosome
contains separate strategies for each unit and each possible trace
discovery scenario (depending on both the vertex and time step).
Hence, finding an optimal strategy in such a complex space repre-
sentation is more difficult in a stochastic strategy changing process
performed by EASG operators.

6.3 Comparison with O2UCT and CBK2017.
Table 2 compares EASGwith the two other state-of-the-art methods.
CBK2017 and EASG reach optimal solutions in comparable number
of runs, however, in terms of the average and the worst outcomes,
EASG visibly outperforms CBK2017. O2UCT is the most repeatable
method and achieves the lowest average distance, albeit has the
smallest number of optimal solution runs.

6.4 Stability
EASG, typically for EA methods, is highly non-deterministic (the
initial population, both operators, as well as the selection procedure
contain random factors). Hence, the sole ability to obtain optimal
solutions, discussed in the previous subsection, is not sufficient for

(a) (b) Warehouse Games. (c) Search Games. (d) FlipIt Games.

Figure 4: (a) A fraction of SEG instances for which EASG found optimal solutions (circles), and computation time requirements
(squares) with respect to the population size. (b)-(d) Comparison of EASG time scalability vs state-of-the-art methods. Please
note the logarithmic scale on both axes.

Table 2: Comparison of 3 heuristic approaches in terms of
the average and the highest distance to the optimal solution,
and the fraction of games ended with an optimal result.

Method WHG SEG FIG
Avg Max % Avg Max % Avg Max %

CBK2017 0.072 0.325 77% 0.084 0.276 43% 0.014 0.127 63%
O2UCT 0.001 0.006 74% 0.015 0.058 37% 0.004 0.012 58%
EASG 0.001 0.013 72% 0.025 0.096 47% 0.009 0.032 73%

the comprehensive EASG assessment. An equally important aspect
of the algorithm is its ability to reproduce good results.

In order to check EASG stability, standard deviations of De-
fender’s payoffs in 30 runs were computed for all games (including
those omitted in the previous subsection due to the lack of exact
solutions) across 30 runs for each game. For 45% of games, stan-
dard deviation was equal to 0 (perfect stability). The mean standard
deviation equaled 0.0059 with the maximal value 0.1629 (36.7% of
the possible payoff range).

Among 133 games for which the optimal solutions were found,
the best solution was repeated in all 30 runs in 82 (62%) cases. For 96
of these games (72%) the optimal solution was found in more than
90% of runs. At the other extreme, in 23 cases (17%) the optimal
strategy was achieved only once. The above figures indicate that,
despite a certain level of randomness, the method offers relatively
high stability and is capable of regularly reproducing the optimal
solution in the majority of the tested games.

6.5 Time scalability
Parameter tuning presented in Section 5.2 indicates that time perfor-
mance of EASG strongly depends on selected steering parameters.
Hence, their adjustment allows establishing the expected balance
between computation time and quality of results.

Figure 4 compares time efficiency of EASG (with parameters
setting listed in Table 1) vs four state-of-the-art algorithms summa-
rized in Section 3. First, the games of a given type (separately WHG,
SEG and FIG) were divided into subsets of instances with pairwise
comparable game tree sizes (after rounding pairwise equal to the
nearest power of 10). Then, for each subset the running times of all
game instances belonging to that subset were averaged and plotted.
As we mentioned in Section 6.2, due to exceeding time limit of 200

hours per trial, for the biggest games the results of exact methods
(BC2015 and C2016) could not be plotted.

Computation times of all five methods grow exponentially with
respect to the game length. However, in the case of MILP-based
algorithms (BC2015, C2016 and CBK2018) the exponents are higher
than in the case of approximate approaches (O2UCT and EASG).
Overall, EASG demonstrates the highest time efficiency among the
tested methods.

6.6 Additional convergence analysis
In this section we discuss certain internal convergence properties
of EASG. Due to space limits we present only general observations
referring to the average behavior of the method. More detailed data
is discussed in supplementary material.

First of all, it should be stressed that convergence characteristics
strongly depends on a game instance. In some simple games EASG
finds optimal strategy very fast, already in the 2nd generations,
whereas in some difficult instances it takes more than 100 gener-
ations to find a stable point. The average number of generations
was equal to 34.

A fitness value for the best individual mostly changes in the first
5 iterations. In the majority of the cases, around the 5th iteration
mixed strategy in the best chromosome already contains all pure
strategies which will make up for the final result. In almost all
runs the average population fitness value increased in time, i.e. a
population as a whole was improving. Standard deviation of fitness
in consecutive generations slowly increased (along with increasing
population diversity) and then stabilized.

The number of pure strategies per chromosome usually increases
linearly in the first 10-20 generations and then stabilizes. The aver-
age number of pure strategies in the final solutions is equal to 5.2.
The maximum observed number of them was 37 and the minimum
was 1 (a single pure strategy with probability 1).

The mean mutation success rate, i.e. a fraction of mutations
which led to fitness improvement was strongly correlated with a
game type and equaled on average 32% for WHG, 2% for SEG and
14% for FIG instances. The main reason for this diversity can be at-
tributed to the fact that the number of all (potential) pure strategies
and their related payoffs significantly differ between game types.
Since mutation introduces a random change into a mixed strategy
its real impact (success rate) strongly depends on particular game
rules. We discuss this issue further in supplementary material.

Figure 5: Histogram of differences between optimal De-
fender’s payoffs and payoffs obtained by baseline EASG and
its optimized versions.

7 EASG MODIFICATIONS
EASG formulation is intentionally generic so as to make the method
widely applicable to various types of SGs. Consequently, the EA
implementation in EASG is rather canonical. In this section we
discuss several enhancements to EASG which are tailored to SG
domain, though still generic, i.e. independent of the particular game
formulation.

(A) Greedy initial strategies (EASG-GIS). In EASG pure strategies
in the initial population are selected randomly. However, a non-
random starting point may potentially lead to better outcomes. To
this end, the baseline population generation method is augmented
in the following way. First, 10𝑝𝑠𝑖𝑧𝑒 pure strategies are generated
randomly and evaluated. Next, 𝑝𝑠𝑖𝑧𝑒 of themwith the highest fitness
(Defender’s payoff) constitute an initial population.

(B)Mutation with new pure strategies (EASG-MNPS). Pure strate-
gies in EASG population can change only as a result of mutation.
However, EASG lacks a mechanism for adding new pure strategies.
Thus, we proposed a new type of mutation (MNPS) which is per-
formed right after the baseline mutation described in Section 4.4.
MNPS adds a randomly selected pure strategy to the mixed strat-
egy encoded in the chromosome. The probability of this newly
added pure strategy is sampled from the unit interval. Afterward,
all probabilities in the modified mixed strategy are normalized.
Initial experiments with MNPS showed that its single application
rarely leads to chromosome improvement. Hence, in the tested
setup it is tried multiple times until the resultant chromosome has
higher fitness or the maximum number of mutation trials𝑚𝑙𝑖𝑚𝑖𝑡 is
reached.

(C) Mutation with changing probability (EASG-MCP). In EASG
probabilities in mixed strategy are changed only as a result of
crossover operation and their values are always halved. For the
sake of higher diversity, we propose another mutation operator
(MCP) which assigns a new uniformly chosen probability to a uni-
formly sampled pure strategy in a chromosome. Subsequently, all
probabilities in that modified mixed strategy are normalized. Simi-
larly to MNPS, this procedure is tried repeatedly until a better-fitted
chromosome is obtained or𝑚𝑙𝑖𝑚𝑖𝑡 is reached.

All 3 above-described modifications ((A)-(C)) were tested on the
same set of games described in Section 6. 𝑚𝑙𝑖𝑚𝑖𝑡 was set to 50.
A comparison of EASG with EASG-GIS, EASG-MNPS and EASG-
MCP presented in Figure 5 shows that all three modified versions

of EASG outperform the baseline algorithm by a clear margin.
While EASG obtained optimal solutions in 72% of WHG, 47% of
SEG and 73% of FIG instances, the respective outcomes for EASG-
GIS: (74%, 54%, 74%), EASG-MNPS: (76%, 55%, 77%) and EASG-MCP:
(75%, 51%, 74%) indicate that the main improvement is observed for
the hardest class of games - SEG.

(D) Other modifications. One can also improve the results by
adding a memetic local optimization phase to EASG, tailored to a
particular game definition. For instance, in SEG one can compute
the best Attacker’s response strategy, detect these components
(𝐿𝑢𝑣𝑡) which affect the resulting payoff and restrict mutation appli-
cation only to them. Such an optimization increases the rate of
optimal solutions from 47% (baseline mutation) to 64%. We did not
include any domain-specific optimizations in EASG for the sake of
keeping the method generic. Further discussion of potential EASG
modifications is presented in the supplementary material.

8 CONCLUSIONS
The paper presents a novel Evolutionary Algorithm approach to
solving sequential Security Games. The method explores the space
of Defender’s strategies by means of evolving a population of can-
didate strategies in order to find Strong Stackelberg Equilibrium.
The method is general and easy to adapt to other types of SGs, and,
more broadly, to other problems that consist in finding SSE.

Experimental evaluation, performed on games of 3 different
types, with 300 instances in total, proved robustness and time ef-
ficiency of EASG. In more than half of the tested game instances
the optimal solutions were found, and for the remaining ones the
average distance to the optimal solution was very low.

The experiments demonstrate that EASG scales in time visibly
better than the state-of-the-art approaches, and, consequently, can
be applied to bigger games (in terms of the size of a game tree or
Defender’s strategy space). Despite the lack of rigorous time and
quality convergence proofs, which is a common situation for EA-
based approaches, promising experimental results make us believe
that the method presents a viable alternative to state-of-the-art
algorithms when solving larger and more complex sequential SGs.

Due to its iterative construction, EASG is well suited for time-
critical applications. Its execution can be interrupted at anymoment,
and still a valid solution (the best one found so far) will be returned.

There is still room for improvement of EASG. Three generic
modifications introduced in Section 7 visibly enhanced the baseline
implementation, indicating the research potential along these lines.

ACKNOWLEDGMENTS
The project was funded by the National Science Centre, grant num-
ber 2017/25/B/ST6/02061.

REFERENCES
[1] Esmaeil Atashpaz-Gargari and Caro Lucas. 2007. Imperialist competitive algo-

rithm: an algorithm for optimization inspired by imperialistic competition. In
2007 IEEE Congress on Evolutionary Computation. IEEE, 4661–4667.

[2] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. 1997. Handbook of
evolutionary computation. CRC Press.

[3] Jonathan F Bard. 2013. Practical bilevel optimization: algorithms and applications.
Vol. 30. Springer Science & Business Media.

[4] Branislav Bošanský and Jiří Čermak. 2015. Sequence-Form Algorithm for Com-
puting Stackelberg Equilibria in Extensive-Form Games. In Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence. 805–811.
[5] José-Fernando Camacho-Vallejo, Álvaro Eduardo Cordero-Franco, and Rosa G

González-Ramírez. 2014. Solving the bilevel facility location problem under
preferences by a Stackelberg-evolutionary algorithm. Mathematical Problems in
Engineering 2014 (2014).

[6] Jakub Černỳ, Branislav Boỳanskỳ, and Christopher Kiekintveld. 2018. Incremen-
tal strategy generation for Stackelberg equilibria in extensive-form games. In
Proceedings of the 2018 ACM Conference on Economics and Computation. ACM,
151–168.

[7] Carlos A Coello Coello and Gary B Lamont. 2004. Applications of multi-objective
evolutionary algorithms. Vol. 1. World Scientific.

[8] Benoît Colson, Patrice Marcotte, and Gilles Savard. 2007. An overview of bilevel
optimization. Annals of operations research 153, 1 (2007), 235–256.

[9] Vincent Conitzer and Tuomas Sandholm. 2006. Computing the optimal strategy
to commit to. In Proceedings of the 7th ACM conference on Electronic commerce.
ACM, 82–90.

[10] James W Friedman. 1986. Game theory with applications to economics. Vol. 87.
Oxford University Press New York.

[11] Abhishek Gupta, Jacek Mańdziuk, and Yew-Soon Ong. 2015. Evolutionary mul-
titasking in bi-level optimization. Complex & Intelligent Systems 1, 1-4 (2015),
83–95.

[12] Jeffrey Horn, Nicholas Nafpliotis, and David Goldberg. 1994. A niched Pareto
genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE
Conference on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, Vol. 1. Citeseer, 82–87.

[13] Yong Hu, Kang Liu, Xiangzhou Zhang, Lijun Su, EWT Ngai, and Mei Liu. 2015.
Application of evolutionary computation for rule discovery in stock algorithmic
trading: A literature review. Applied Soft Computing 36 (2015), 534–551.

[14] Manish Jain, Dmytro Korzhyk, Ondřej Vaněk, Vincent Conitzer, Michal Pě-
chouček, and Milind Tambe. 2011. A double oracle algorithm for zero-sum secu-
rity games on graphs. In The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1. International Foundation for Autonomous
Agents and Multiagent Systems, 327–334.

[15] Manish Jain, Jason Tsai, James Pita, Christopher Kiekintveld, Shyamsunder Rathi,
Milind Tambe, and Fernando Ordónez. 2010. Software assistants for randomized
patrol planning for the lax airport police and the federal air marshal service.
Interfaces 40, 4 (2010), 267–290.

[16] Jan Karwowski and Jacek Mańdziuk. 2015. A new approach to security games.
In International Conference on Artificial Intelligence and Soft Computing. Springer,
402–411.

[17] Jan Karwowski and Jacek Mańdziuk. 2016. Mixed Strategy Extraction from UCT
Tree in Security Games. In Proceedings of the Twenty-Second European Conference
on Artificial Intelligence (The Hague, The Netherlands) (ECAI’16). IOS Press, NLD,
1746–1747.

[18] Jan Karwowski and Jacek Mańdziuk. 2019. A Monte Carlo Tree Search approach
to finding efficient patrolling schemes on graphs. European Journal of Operational
Research 277, 1 (2019), 255–268.

[19] Jan Karwowski and Jacek Mańdziuk. 2019. Stackelberg Equilibrium Approxi-
mation in General-Sum Extensive-Form Games with Double-Oracle Sampling
Method. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2045–2047.

[20] Jan Karwowski, Jacek Mańdziuk, Adam Żychowski, Filip Grajek, and Bo An.
2019. A memetic approach for sequential security games on a plane with moving
targets. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence.
970–977.

[21] Jan Karwowski and Jacek Mańdziuk. 2020. Double-oracle sampling method for
Stackelberg Equilibrium approximation in general-sum extensive-form games.
In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence.
2054–2061.

[22] Christopher Kiekintveld, Manish Jain, Jason Tsai, James Pita, Fernando Ordóñez,
and Milind Tambe. 2009. Computing optimal randomized resource allocations
for massive security games. In Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1. International Foundation
for Autonomous Agents and Multiagent Systems, 689–696.

[23] Christopher Kiekintveld and Vladik Kreinovich. 2012. Efficient approximation
for security games with interval uncertainty. In 2012 AAAI Spring Symposium
Series. 42–46.

[24] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning.
In European conference on machine learning. Springer, 282–293.

[25] Harold W Kuhn. 1950. Extensive games. Proceedings of the National Academy of
Sciences of the United States of America 36, 10 (1950), 570.

[26] VS Anil Kumar, Rajmohan Rajaraman, Zhifeng Sun, and Ravi Sundaram. 2010.
Existence theorems and approximation algorithms for generalized network secu-
rity games. In 2010 IEEE 30th International Conference on Distributed Computing
Systems. IEEE, 348–357.

[27] George Leitmann. 1978. On generalized Stackelberg strategies. Journal of opti-
mization theory and applications 26, 4 (1978), 637–643.

[28] Jacek Mańdziuk, Jan Karwowski, and Adam Żychowski. 2019. Simulation-based
methods in multi-step Stackelberg Security Games in the context of homeland
security. https:// sg.mini.pw.edu.pl.

[29] Jacek Mańdziuk and Adam Żychowski. 2016. A memetic approach to vehicle
routing problem with dynamic requests. Applied Soft Computing 48 (2016), 522–
534.

[30] Nolan McCarty and Adam Meirowitz. 2007. Political game theory: an introduction.
Cambridge University Press.

[31] Geoffrey A Parker and J Maynard Smith. 1990. Optimality theory in evolutionary
biology. Nature 348, 6296 (1990), 27–33.

[32] Praveen Paruchuri, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando
Ordonez, and Sarit Kraus. 2008. Playing games for security: An efficient exact
algorithm for solving Bayesian Stackelberg games. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 895–
902.

[33] Ramin Rajabioun, Esmaeil Atashpaz-Gargari, and Caro Lucas. 2008. Colonial
competitive algorithm as a tool for Nash equilibrium point achievement. In
International Conference on Computational Science and Its Applications. Springer,
680–695.

[34] Masatoshi Sakawa, Ichiro Nishizaki. 2000. Computational methods through
genetic algorithms for obtaining Stackelberg solutions to two-level mixed zero-
one programming problems. Cybernetics & Systems 31, 2 (2000), 203–221.

[35] M Sefrioui and J Perlaux. 2000. Nash genetic algorithms: examples and applica-
tions. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00
(Cat. No. 00TH8512), Vol. 1. IEEE, 509–516.

[36] Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph DiRenzo,
Ben Maule, and Garrett Meyer. 2012. Protect: A deployed game theoretic system
to protect the ports of the united states. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1. International
Foundation for Autonomous Agents and Multiagent Systems, 13–20.

[37] Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and Milind Tambe.
2018. Stackelberg Security Games: Looking Beyond a Decade of Success. In IJCAI.
5494–5501.

[38] Marco Slikker and Anne Van den Nouweland. 2012. Social and economic networks
in cooperative game theory. Vol. 27. Springer Science & Business Media.

[39] Thomas Vallée and Tamer Başar. 1999. Off-line computation of Stackelberg
solutions with the genetic algorithm. Computational Economics 13, 3 (1999),
201–209.

[40] Marten Van Dijk, Ari Juels, Alina Oprea, and Ronald L Rivest. 2013. FlipIt: The
game of stealthy takeover. Journal of Cryptology 26, 4 (2013), 655–713.

[41] Jiří Čermák, Branislav Bošanský, Karel Durkota, Viliam Lisý, and Christopher
Kiekintveld. 2016. Using Correlated Strategies for Computing Stackelberg Equi-
libria in Extensive-Form Games. In Proceedings of the Thirty AAAI Conference on
Artificial Intelligence. 439–445.

[42] Heinrich Von Stackelberg. 1934. Marktform und gleichgewicht. Springer.
[43] Yufei Wang, Zheyuan Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa,

and Fei Fang. 2019. Deep reinforcement learning for green security games with
real-time information. In Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence. 1401–1408.

[44] Rong Yang, Benjamin Ford, Milind Tambe, and Andrew Lemieux. 2014. Adaptive
resource allocation for wildlife protection against illegal poachers. In Proceedings
of the 2014 International Conference on Autonomous Agents andMultiagent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 453–
460.

[45] Zhengyu Yin, Albert Xin Jiang, Matthew P Johnson, Christopher Kiekintveld,
Kevin Leyton-Brown, Tuomas Sandholm,Milind Tambe, and John P Sullivan. 2012.
Trusts: Scheduling randomized patrols for fare inspection in transit systems. In
Proceedings of the Twenty-Fourth Conference on Innovative Applications of Artificial
Intelligence. 59.

[46] Adam Żychowski, Abhishek Gupta, Jacek Mańdziuk, and Yew Soon Ong. 2018.
Addressing expensive multi-objective games with postponed preference articula-
tion via memetic co-evolution. Knowledge-Based Systems 154 (2018), 17–31.

[47] Adam Żychowski and Jacek Mańdziuk. 2020. A Generic Metaheuristic Approach
to Sequential Security Games. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 2089–2091.

https://sg.mini.pw.edu.pl

— SUPPLEMENTARY MATERIAL — AAMAS’2021

In this appendix additional analysis of the EASG method and a
discussion on its potential enhancements are provided. We start
with presentation of a general flowchart of the method (Fig. 6)
and examples of crossover and mutation operations (Figs. 7 and 8,
respectively). Then, in Section B we discuss certain EASG conver-
gence properties in more detail, and in Section C propose potential
directions for EASG improvement, mainly by means of adjusting
evolutionary operators.

A EASG FLOW-CHART AND EVOLUTIONARY
OPERATORS

Generate initial set
of encoded Defender’s

mixed strategies

Is generations
limit reached?

Crossover:
Merge randomly selected
pairs of chromosomes
(mixed strategies)

Mutation:
Change actions in randomly selected

elements of chromosomes
(pure strategies)

Evaluation:
Calculate fitness function value

of all chromosomes – the Defender’s
payoff against the optimal

Attacker’s response to a strategy
encoded in a chromosome

Selection:
Choose chromosomes
for the next generation

Return best
Defender’s
strategy

No

next generation

Yes

Figure 6: An overview of the EASG method.

B PROPERTIES OF THE BASELINE EASG
B.1 Convergence pattern
A typical pattern of EASG convergence is presented in Figure 9.
The mean fitness value increases in consecutive generations which
means that the entire population moves towards the areas with
higher payoffs. At the same time, the lowest payoff is quite far away
from the average population value calculated across all generations.
This property stems from an application ofmutation operator which
introduces random changes into strategies and may potentially de-
teriorate (the assessment of) an individual. Both properties (the

Figure 7: An example of crossover operation. Each row of
circles represents a sequence of actions in consecutive time
steps (Defender’s pure strategy). Squares denote probabili-
ties assigned to the respective strategies. First, an offspring
chromosome inherits all pure strategies from both of its par-
ents (with halved probabilities). Then, some strategies are
potentially removed (in the example it is the one with the
lowest probability) and probabilities of the remaining strate-
gies are normalized (to sum up to 1).

Figure 8: An example of mutation operation. Each row of
circles represents a sequence of actions in consecutive time
steps (Defender’s pure strategy). Squares denote probabili-
ties assigned to the respective strategies. In the presented
case, the second pure strategy undergoes mutation, starting
from the third time step.

average fitness improvement and low minimal fitness) are gener-
ally considered desired properties of an evolutionary algorithm,
contributing to the diversity and the strength of the population.

The improvement of the fittest individual (with maximal De-
fender’s payoff) is most significant during the first few generations.
In subsequent generations only small adjustments are observed.

B.2 Convergence speed
Figure 10 illustrates a distribution of the number of generations
required before a stop condition is satisfied. In the vast majority
of experiments this value stays below 30. Since the stop condition
is triggered if the best result does not improve in 20 consecutive
generations, in most cases the final solution was effectively found
within the first 10 generations. The average number of generations
equaled 34 with a maximum of 181.

0 20 40 60 80 100
generation

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

De
fe

nd
er

's
pa

yo
ff

min
avg
max

Figure 9: Maximal, minimal and average fitness values (De-
fender’s payoffs) in a population in a typical run.

B.3 Stability
Stability of EASG solutions is illustrated in Figure 11 which, for
each game type, shows a distribution of standard deviations of
payoffs, each of them computed based on 30 independent runs for
a given game instance. In the vast majority of cases, the standard
deviation is 0which proves high repeatability of the method, despite
its stochastic nature.

B.4 Chromosome sizes
Figure 12 demonstrates the average length of mixed strategies en-
coded by chromosomes, i.e. the average number of pure strategies
constituting a mixed strategy in a chromosome, in 3 exemplar runs.
In the initial phase a complexity of an average mixed strategy in-
creases approximately linearly, reaching a plateau around the 50th
generation. This stabilization is an effect of a particular form of
crossover operator. In the case of the higher number of pure strate-
gies in a chromosome their probabilities are relatively smaller which
increases a chance for their deletion during crossover operation.

The number of pure strategies in the optimal (theoretical) so-
lution strongly depends on a particular game instance and in the
considered benchmark varies between 2 and 28. An experimental
distribution of this value aggregated by game type is presented
in Figure 13. The majority of the resulting mixed strategies are
composed of 2-4 pure strategies. In rare situations their number
exceeds 14.

B.5 Mutation success rates
An interesting property, apparently strongly correlated with game
type, is mutation success rate, i.e. a fraction of mutations that led
to fitness improvement. Its distribution is presented in Figure 14.
For Warehouse Games mutation improves a chromosome quite
frequently - roughly 30 − 35% of mutations ends up with better
fitted individuals. In the remaining two genres of games (FlipIt
Games and Search Games) this rate is much lower. This variability
can be explained by the differences in game rules and strategy space
sizes.

20 30 40 50 60 70 80 90 100110120130140150160170180
number of generations

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f r
un

s

(a) Warehouse Games.

20 30 40 50 60 70 80 90 100 110 120 130
number of generations

0

200

400

600

800

1000

1200

1400

1600

nu
m

be
r o

f r
un

s

(b) Search Games.

20 30 40 50 60 70 80 90 100110120130140150160170180
number of generations

0

200

400

600

800

1000

nu
m

be
r o

f r
un

s

(c) FlipIt Games.

Figure 10: Histograms of the numbers of generations in all
experiments.

For instance, in SEG some pure Defender’s strategies refer to the
case of trace discovery (cf. Section 5.1.2 of the main paper), however,
if the Attacker’s strategy is to erase traces, then changes in these
pure Defender’s strategies would have no influence on the actual
payoffs. In effect, a mutation applied to such strategies would not
affect the fitness value of an individual.

C EASG ENHANCEMENTS
Several modifications to the baseline EASG formulation have been
tested during the experimental assessment of the method. All of
them preserve a generic character of the proposed algorithm. Each
EASG variant was tested on the same set of benchmarks as the

(a) Warehouse Games.

(b) Search Games.

(c) FlipIt Games.

Figure 11: A distribution of standard deviations of payoffs
in all experiments aggregated by game type.

baseline EASG version. In this section we first briefly describe all
considered modifications and then present and discuss the results
of their application.

C.1 Tested variants of EASG
• MNPS - mutation with new pure strategies - mutation opera-
tor is extended with a new action: a randomly selected pure
strategy is added to a chromosome with uniformly sampled
probability. The chromosome is reverted to its previous form
if its fitness deteriorates. The mutation is repeated until a
better solution is found or predefined limit of trials𝑚𝑙𝑖𝑚𝑖𝑡

is reached.

0 25 50 75 100 125 150
generation

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

av
er

ag
e

st
ra

te
gy

 le
ng

th

Figure 12: Average number of pure strategies in all chromo-
somes in a population, in 3 sample runs.

• MCP - mutation with changing probability - mutation opera-
tor is extended with a new action: a probability of randomly
selected pure strategy is uniformly changed. The chromo-
some is reverted to its previous form if its fitness deteriorates.
The mutation is repeated until a better solution is found or
predefined limit of trials𝑚𝑙𝑖𝑚𝑖𝑡 is reached.

• MSP - mutation with switching probability - mutation op-
erator is extended with a new action: probabilities of two
randomly chosen pure strategies are switched. The chromo-
some is reverted to its previous form if its fitness deteriorates.
The mutation is repeated until a better solution is found or
predefined limit of trials𝑚𝑙𝑖𝑚𝑖𝑡 is reached.

• MDPS - mutation with deleting pure strategy - mutation
operator is extended with a new action: a randomly chosen
pure strategy is removed. The chromosome is reverted to
its previous form if its fitness deteriorates. The mutation is
repeated until a better solution is found or predefined limit
of trials𝑚𝑙𝑖𝑚𝑖𝑡 is reached.

• MNPS1 - MNPS modification without repetition - a randomly
chosen new pure strategy is added (regardless of the resulting
impact on the individual fitness).

• MCP1 - MCP modification without repetition - a probability
of a randomly selected pure strategy is changed only once.

• MSP1 -MSP modification without repetition - probabilities of
two randomly selected pure strategies are switched (regard-
less of the resulting impact on the individual fitness).

• MDPS1 - MDPS modification without repetition - a randomly
selected pure strategy is removed (regardless of the resulting
impact on the individual fitness).

• MDPS𝑊 - deleting the weakest pure strategy - mutation op-
erator is extended with a new action: deleting pure strategy
with the lowest payoff.

• CWP - crossover with payoff consideration - in crossover op-
erator, instead of removing pure strategies based on their
probabilities (as in the baseline EASG crossover) pure strate-
gies are removed with probability inversely proportional to
their payoff.

2 4 6 8 10 12 14 16 18 20 22 24 26 28
mixed strategy length

0

500

1000

1500

2000

nu
m

be
r o

f r
un

s

(a) Warehouse Games.

2 4 6 8 10 12 14 16 18
mixed strategy length

0

200

400

600

800

1000

1200

nu
m

be
r o

f r
un

s

(b) Search Games.

2 4 6 8 10 12 14 16 18 20
mixed strategy length

0

200

400

600

800

nu
m

be
r o

f r
un

s

(c) FlipIt Games.

Figure 13: Histograms of the numbers of pure strategies in
final solutions calculated for all experiments.

• GIS - greedy initial strategies - initial pure strategies are se-
lected from a wide set of pure strategies; 𝑝𝑠𝑖𝑧𝑒 pure strategies
with the greatest payoffs constitute the initial population.

• MWPS - mutation of weakest pure strategy - mutation is
applied only to a pure strategy with the lowest payoff.

• MWPS𝑃 - mutation of weakest pure strategy proportional -
mutation is applied to randomly chosen pure strategy, but
the probability of its selection is inversely proportional to
the expected payoff obtained after its application.

0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38
mutation success rate

0

200

400

600

800

nu
m

be
r o

f r
un

s

(a) Warehouse Games.

0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
mutation success rate

0

100

200

300

400

500

600

700

nu
m

be
r o

f r
un

s

(b) Search Games.

0.0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3
mutation success rate

0

100

200

300

400

500

600

nu
m

be
r o

f r
un

s

(c) FlipIt Games.

Figure 14:Histograms ofmutation success rates (fractions of
mutations that led to solution improvement) calculated for
all experiments, averaged across all generations in a given
run.

• NIG - new individuals in a generation - a bunch of new pure
strategies are added to the population in each generation.

EASG MNPS MCP MDPS MSP CWP GIS MNPS1 MCP1 MDPS1 MSP1 MWPS MWPS𝑃 NIG MDPS𝑊
WHG 0.015 0.016 0.016 0.013 0.016 0.014 0.015 0.013 0.013 0.008 0.014 0.015 0.013 0.015 0.005
SEG 0.048 0.139 0.131 0.033 0.108 0.059 0.074 0.099 0.052 0.018 0.050 0.099 0.046 0.094 0.019
FIG 0.031 0.036 0.037 0.026 0.037 0.031 0.034 0.030 0.032 0.018 0.034 0.029 0.031 0.031 0.016

Table 3: The average Defender’s payoffs in various EASG variants. The first column (EASG) contains reference results obtained
for the baseline algorithm. The best results for each game type are bolded.

0 200 400 600 800 1000
mutation repetition limit

0.098

0.100

0.102

0.104

0.106

av
er

ag
e

De
fe

nd
er

's
pa

yo
ff

EASG-MNPS
EASG-MCP

Figure 15: Influence of mutation repetition limit 𝑚𝑙𝑖𝑚𝑖𝑡 on
the average Defender’s payoff for MNPS and MCP modifica-
tions.

C.2 Performance
Table 3 presents the averageDefender’s payoffs in all above-introduced
EASG variants, separately for each game type, with𝑚𝑙𝑖𝑚𝑖𝑡 set to
50. Based on the results the examined modifications can be divided
into 3 groups:

• better than baseline EASG - i.e. MNPS,MCP,MSP, and GIS. In
the case of WHG and FIG games the advantage is moderate
but for SEG instances the gain is significant;

• worse than baseline EASG - i.e. MDPS, MDPS1, MDPS𝑤
(methods which remove pure strategies);

• similar to baseline EASG - the rest of the methods obtained
results comparable to those of EASG.

In all cases, variants with repeated mutations produced better
outcomes than their counterparts without repetition (denoted by
subscript 1). Repeating mutation until a better individual is gener-
ated makes mutation a greedy process and increases the mutation
success rate approximately 2-3 times.

Figure 15 confirms the usefulness of multiple-trial mutations.
The greater the value𝑚𝑙𝑖𝑚𝑖𝑡 the higher the expected Defender’s
payoffs obtained. The gain is particularly significant in low range
of the limit i.e.𝑚𝑙𝑖𝑚𝑖𝑡 < 50. Starting from𝑚𝑙𝑖𝑚𝑖𝑡 ≈ 400 the payoff
curves flatten.

	Abstract
	1 Introduction
	1.1 Contribution

	2 Problem definition
	3 State-of-the-art Approaches
	4 Evolutionary Algorithm for Security Games
	4.1 Chromosome representation
	4.2 Initial population
	4.3 Crossover
	4.4 Mutation
	4.5 Evaluation
	4.6 Selection

	5 Experimental setup
	5.1 Benchmark games
	5.2 EASG parametrization

	6 Experimental evaluation of EASG
	6.1 Convergence
	6.2 Results quality
	6.3 Comparison with O2UCT and CBK2017.
	6.4 Stability
	6.5 Time scalability
	6.6 Additional convergence analysis

	7 EASG modifications
	8 Conclusions
	Acknowledgments
	References
	A EASG flow-chart and evolutionary operators
	B Properties of the baseline EASG
	B.1 Convergence pattern
	B.2 Convergence speed
	B.3 Stability
	B.4 Chromosome sizes
	B.5 Mutation success rates

	C EASG enhancements
	C.1 Tested variants of EASG
	C.2 Performance

