
Optimized mutation operator in evolutionary
approach to Stackelberg Security Games

Adam Żychowski[0000−0003−0026−5183], Jacek Mańdziuk[0000−0003−0947−028X]

Warsaw University of Technology
Faculty of Mathematics and Information Science

Koszykowa 75, 00-662 Warsaw, Poland
a.zychowski@mini.pw.edu.pl mandziuk@mini.pw.edu.pl

Abstract. In this paper, we introduce several mutation modifications in Evo-
lutionary Algorithm for finding Strong Stackelberg Equilibrium in sequential
Security Games. The mutation operator used in the state-of-the-art evo-
lutionary method is extended with several greedy optimization techniques.
Proposed mutation operators are comprehensively tested on three types of
games with different characteristics (in total over 300 test games). The ex-
perimental results show that application of some of the proposed mutations
yields Defender’s strategies with higher payoffs. A trade-off between the
results quality and the computation time is also discussed.
Keywords: Security Games, Stackelberg Equilibrium, Evolutionary Compu-
tation

1. Introduction

Evolutionary Algorithms (EAs) are popular and powerful population-based
metaheuristic optimization methods. Their effectiveness strongly depends on de-
signed evolutionary operators: mutation, crossover, and selection [1]. One of the
potential improvements can be achieved by adding some local optimization tech-
niques – either as a separate algorithm step or as a part of the evolutionary opera-
tors [2].

In this study, the above claim is verified with respect to the evolutionary al-
gorithm for sequential Stackelberg Security Games (SSGs) [3], by means of an
introduction and experimental evaluation of various greedy optimizations for the
mutation operator. Some of the proposed modifications lead to better results and
superior Defender’s strategies.



2 Optimized mutation operator in evolutionary approach to Security Games

2. Problem definition

Sequential SSGs are played by two players: the Defender (D) and the At-
tacker (A). Each game is composed of m time steps and each player chooses
an action to be performed (simultaneously) in each time step. A player’s pure
strategy σP (P ∈ {D, A}) is a sequence of their actions in consecutive time steps:
σP = (a1, a2, . . . , am). The set of all possible pure strategies of player P is denoted
by ΣP. A probability distribution πP ∈ Πp over ΣP is the player’s mixed strategy,
where Πp is the set of all mixed strategies for player P.

For any pair of strategies (πD, πA) the expected payoffs for the players are de-
noted by UD(πD, πA) and UA(πD, πA). The goal of the game is to find the Strong
Stackelberg Equilibrium (SSE), i.e. a pair of strategies (πD, πA) satisfying the fol-
lowing conditions:

πD = arg max
π̄D∈ΠD

UA(π̄D, BR(π̄D)), BR(πD) = arg max
πA∈ΠA

UA(πD, πA).

The first equation chooses the best Defender’s strategy πD under the assumption
that the Attacker always selects the best response strategy (BR(πD)) to the De-
fender’s committed strategy. If there exists more than one optimal Attacker’s re-
sponse (with the same highest Attacker’s payoff), the Attacker selects the one with
the highest corresponding Defender’s payoff, i.e. breaks ties in favor of the De-
fender [4].

Both players choose their strategies at the beginning of a game (first the De-
fender and then the Attacker) and the strategies cannot be altered during the course
of the game. The problem of finding SSE has been proven to be NP-hard [5].

3. Evolutionary Algorithm

The Evolutionary Algorithm for Stackelberg Games (EASG) [6] aims to opti-
mize the Defender’s payoff by evolving a population of Defender’s mixed strate-
gies. Initially, EASG creates a population of pure Defender’s strategies selected at
random. The population evolves over successive generations until the stopping cri-
terion is met. Four operations are applied in each generation: crossover, mutation,
evaluation, and selection.

Crossover randomly selects two individuals from the population and combines
their pure strategies by halving their probabilities and merging them into a single
chromosome. The resultant chromosome is simplified by deleting some of its pure



A. Żychowski, J. Mańdziuk 3

strategies, with the probability of deletion being inversely proportional to their
probabilities.

The mutation operator randomly selects a pure strategy encoded in the chro-
mosome and modifies it, starting from a randomly selected time step. New actions
are drawn from the set of all feasible actions in a given game state.

Each individual in the population is then assigned a fitness value, which repre-
sents the expected Defender’s payoff. This requires finding the optimal Attacker’s
response to the mixed Defender’s strategy encoded in the chromosome. EASG
accomplishes this by iterating over all possible Attacker’s pure strategies and se-
lecting the one with the highest Attacker’s payoff [6].

In the selection phase, individuals with higher Defender’s payoffs have a higher
likelihood of being chosen for the next generation. This is achieved through a
binary tournament in which two chromosomes are repeatedly selected with return,
and the one with the higher fitness value is promoted with a certain probability (the
selection pressure). Additionally, a set of chromosomes with the highest fitness
function value is unconditionally copied to the next generation to preserve the best
solutions found so far (the elite mechanism).

EASG is a generic framework which can be applied to various SSGs. For in-
stance, it has been successfully applied to games with moving targets [7], signaling
games [8], or games that assume bounded rationality of the Attacker [9, 10].

4. Mutation modifications

In EASG the mutation changes random actions from randomly selected pure
strategy. We observed that this approach rarely leads to individuals with higher
fitness function. For some types of games it is less than 6% of mutation execu-
tions, while the recommended literature standard is 20% - one-fifth rule [11]. In
order to improve the mutation impact, we propose and test various mutation
implementations, other than the baseline [6], which may potentially improve
Defender’s strategies encoded in chromosomes.

We test 11 different types of mutation modifications, which are briefly de-
scribed below. Rather than entirely replacing the original mutation operator in
EASG we propose that the new type of mutation be applied (replace the original
one) with a probability equal to 0.5. All other EASG operators and parameters re-
main the same as reported in [6]. Depending on the number of mutations applied,
we generally distinguish two cases:



4 Optimized mutation operator in evolutionary approach to Security Games

(1) The mutation is applied only once and its result is preserved regardless of the
resulting impact on the individual fitness (this approach was used in EASG). All
such variants will be denoted with a subscript 1, e.g. MNPS1,
(2) The mutation is repeated until a better solution is found or a predefined limit
of trials n is reached. After each trial, the chromosome is reverted to its previous
form if its fitness deteriorates. Such variants will be denoted by subscript n, e.g.
MNPSn. In the experiments, n = 50 was used.

In either case, if the encoded mixed strategy probabilities have changed as a
result of applied mutation, they are normalized to sum up to 1. The following mu-
tation enhancements have been tested:
- EASGn - EASG algorithm with repeated mutation.
- MANPS1, MANPSn - mutation adds new pure strategy - a uniformly selected
pure strategy is added to a chromosome, with a uniformly sampled probability.
- MCP1, MCPn - mutation changes probability - a probability of randomly se-
lected pure strategy is uniformly changed.
- MSP1, MSPn - mutation switches probability - probabilities of two randomly
chosen pure strategies are switched.
- MDPS1, MDPSn - mutation deletes pure strategy -a randomly chosen pure strat-
egy is removed.
- MCWPS - mutation changes the weakest pure strategy - mutation is applied only
to a pure strategy with the lowest payoff.
- MDWPS - mutation deletes the weakest pure strategy - pure strategy with the
lowest payoff is deleted.

5. Results and Conclusions

All mutation variants have been tested on 3 types of Security Games: Ware-
house Games (WHG) [12], Search Games (SEG) [13], and FlipIt Games (FIG) [14].
The same game instances were also used for EASG evaluation [6]. Please refer
to [6] for a detailed description of the rules and characteristics of the games.

Table 1 shows experimental results averaged over 30 independent runs and all
game instances – 150 WHG, 90 SEG, and 60 FIG. The biggest improvement is
observed for SEG. This may be attributed to the fact that SEG is the most complex
type of game, with the largest search space. Variants with mutation repetitions
yield higher results improvements, but also lead to a significant (approximately
tenfold) increase in computation time. The reason for that is frequent evaluation



A. Żychowski, J. Mańdziuk 5

Table 1. The average and standard deviation values of the Defender’s payoff and
the computation time for various mutation operators. The best results are bolded.
Results that are better than the baseline version of the algorithm (EASG) are
underlined. In cases where the difference between the baseline version (EASG)
and a given variation is statistically significant (according to the Wilcoxon test
with p-value < 0.05), the result is highlighted with a gray background .

Defender’s payoff Computation time [s]
WHG SEG FIG WHG SEG FIG

EASG 0.017 ±0.001 0.108 ±0.006 0.031 ±0.002 152±6 2534±150 328±20
EASGn 0.017 ±0.001 0.135 ±0.008 0.037 ±0.003 1206±84 21913±1264 3051±224

MANPS1 0.014 ±0.001 0.059 ±0.004 0.031 ±0.002 156±8 2548±119 313±11
MANPSn 0.016 ±0.001 0.139 ±0.013 0.036 ±0.002 1366±62 21892±1463 2988±112

MCP1 0.015 ±0.001 0.074 ±0.007 0.030 ±0.002 148±6 2422±82 336±19
MCPn 0.016 ±0.001 0.131 ±0.012 0.037 ±0.002 1285±91 22651±751 3008±145

MSP1 0.013 ±0.001 0.099 ±0.007 0.024 ±0.001 156±7 2583±124 316±15
MSPn 0.016 ±0.001 0.108 ±0.006 0.037 ±0.004 1332±84 21447±1594 2931±203

MDPS1 0.013 ±0.001 0.052 ±0.005 0.029 ±0.002 147±8 2620±79 313±15
MDPSn 0.013 ±0.001 0.053 ±0.005 0.026 ±0.002 1283±81 22026±1599 2900±111

MCWPS 0.013 ±0.001 0.046 ±0.004 0.030 ±0.003 148±6 2612±151 321±20
MDWPS 0.008 ±0.002 0.058 ±0.004 0.018 ±0.002 139±4 2361±141 299±11

(for each chromosome, after each mutation attempt) needed to decide whether the
mutation results should be retained or another mutation attempt should be used.

A greedy selection of the worst pure strategies (MCWPS and MDWPS) turned
out to be an ineffective approach. This is most likely attributed to the fact that
considering the quality of individual pure strategies in isolation from the other
elements of a given mixed strategy may not be the right approach. Even if a single
pure strategy is weak on its own, it may play a crucial role in the overall mixed
strategy by rendering the decision that is unfavorable for the Defender to be also
unprofitable for the Attacker.

Overall, the results show that repetition of mutation operation generally leads
to improvement of SSGs outcomes, though at the expense of significant increase in
computation time. Hence, in situations when computational cost is less important
and obtaining the best possible result is critical, the proposed modifications offer a
viable alternative to the base EASG formulation.



6 Optimized mutation operator in evolutionary approach to Security Games

References

[1] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs.
Springer Berlin Heidelberg, 1996.

[2] Neri, F. and Cotta, C. Memetic algorithms and memetic computing optimization: A
literature review. Swarm and Evolutionary Computation, 2:1–14, 2012.

[3] Sinha, A., Fang, F., An, B., Kiekintveld, C., and Tambe, M. Stackelberg Security
Games: Looking Beyond a Decade of Success. In Proceedings of the 27th IJCAI
conference, pages 5494–5501. 2018.

[4] Breton, M., Alj, A., and Haurie, A. Sequential stackelberg equilibria in two-person
games. Journal of Optimization Theory and Applications, 59(1):71–97, 1988.

[5] Conitzer, V. and Sandholm, T. Computing the optimal strategy to commit to. In
Proceedings of the 7th ACM conference on Electronic commerce, pages 82–90. 2006.

[6] Żychowski, A. and Mańdziuk, J. Evolution of Strategies in Sequential Security
Games. In Proceedings of the 20th AAMAS conference, pages 1434–1442. 2021.

[7] Karwowski, J., Mańdziuk, J., Żychowski, A., Grajek, F., and An, B. A memetic ap-
proach for sequential security games on a plane with moving targets. In Proceedings
of the 33rd AAAI conference, volume 33, pages 970–977. 2019.

[8] Żychowski, A., Mańdziuk, J., Bondi, E., Venugopal, A., Tambe, M., and Ravindran,
B. Evolutionary approach to Security Games with signaling. Proceedings of the 31st
IJCAI conference, pages 620–627, 2022.

[9] Żychowski, A. and Mańdziuk, J. Learning attacker’s bounded rationality model in
security games. In Proceedings of the 28th ICONIP, pages 530–539. 2021.

[10] Karwowski, J., Mańdziuk, J., and Żychowski, A. Sequential stackelberg games with
bounded rationality. Applied Soft Computing, 132:109846, 2023.

[11] Eiben, A. E., Michalewicz, Z., Schoenauer, M., and Smith, J. E. Parameter control in
evolutionary algorithms. Parameter setting in evolutionary algorithms, pages 19–46,
2007.

[12] Karwowski, J. and Mańdziuk, J. A Monte Carlo Tree Search approach to finding
efficient patrolling schemes on graphs. European Journal of Operational Research,
277:255–268, 2019.

[13] Bošanský, B. and Čermak, J. Sequence-form algorithm for computing stackelberg
equilibria in extensive-form games. In Proceedings of the 29th AAAI conference,
pages 805–811. 2015.

[14] Van Dijk, M., Juels, A., Oprea, A., and Rivest, R. L. Flipit: The game of “stealthy
takeover”. Journal of Cryptology, 26(4):655–713, 2013.


