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Abstract. This paper presents a generalized view on the family of swarm
optimization algorithms. Paper focuses on a few distinct variants of the
Particle Swarm Optimization and also incorporates one type of Differ-
ential Evolution algorithm as a particle’s behavior. Each particle type is
treated as an agent enclosed in a framework imposed by a basic PSO.
Those agents vary on the velocity update procedure and utilized neigh-
borhood. This way, a hybrid swarm optimization algorithm, consisting
of a heterogeneous set of particles, is formed. That set of various op-
timization agents is governed by an adaptation scheme, which is based
on the roulette selection used in evolutionary approaches. The proposed
Generalized Self-Adapting Particle Swarm Optimization algorithm per-
formance is assessed a well-established BBOB benchmark set.
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1 Introduction

Since its introduction [10] and subsequent modifications [5, 20] Particle Swarm
Optimization (PSO) algorithm has attracted many researchers by its simplicity
of implementation and easiness of parallelization [11, 27]. PSO has currently a
several standard approaches [5], multiple parameter settings considered to be
optimal [8] and successful specialized approaches [3]. PSO have also been tried
with various topologies [9, 19], and unification [18] and adaptation schemes.

This paper brings various population based approaches together, and puts
them in a generalized swarm-based optimization framework (GPSO). The mo-
tivation for such an approach comes from the social sciences, where diversity is
seen as a source of synergy [12] and our adaptive approach (GAPSO) seeks an
emergence of such a behavior within a heterogeneous swarm [15].

The remainder of this paper is arranged as follows. Section 2 introduces PSO
and its adaptive modifications, together with discussing Differential Evolution
(DE) algorithm and its hybridizations with PSO. In Section 3 general overview
of the system’s construction is provided. Section 4 describes adaptation scheme
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and future system implementation details. Section 5 is devoted to a presentation
of the experimental setup, in particular, the benchmark sets and parametrization
of the methods used in the experiments. Experimental results are presented in
Section 6. The last section concludes the paper.

2 Particle Swarm Optimization: modification and
hybridization approaches

This section reviews optimization algorithms used as basic building blocks within
our generalized approach: PSO and DE. Initial subsections introduce the basic
forms of the PSO and DE algorithms, while the following summarize the research
on hybridizing those approaches and creating the adaptive swarm optimizers.

Particle Swarm Optimization. PSO is an iterative global optimization meta-
heuristic method utilizing the ideas of swarm intelligence [10,20]. The underlying
idea of the PSO algorithm consists in maintaining the swarm of particles mov-
ing in the search space. For each particle the set of neighboring particles which
communicate their positions and function values to this particle is defined. Fur-
thermore, each particle maintains its current position x and velocity v, as well
as remembers its historically best (in terms of solution quality) visited location.
In each iteration t, ith particle updates its position and velocity, according to
formulas 1 and 2.

Position update. The position is updated according to the following equation:

xi
t+1 = xi

t + vi
t+1. (1)

Velocity update. In a basic implementation of PSO (as defined in [5,20]) velocity
vit of particle i is updated according to the following rule:

vi
t+1 = ω · vi

t + c1 · (pi
best − xi

t) + c2 · (neighborsibest − xi
t) (2)

where ω is an inertia coefficient, c1 is a local attraction factor (cognitive co-
efficient), pi

best represents the best position (in terms of optimization) found
so far by particle i, c2 is a neighborhood attraction factor (social coefficient),
neighborsibest represents the best position (in terms of optimization) found so
far by the particles belonging to the neighborhood of the ith particle (usually
referred to as gbest or lbest).

Differential Evolution. DE is an iterative global optimization algorithm in-
troduced in [21]. DE’s population is moving in the search space of the objective
function by testing the new locations for each of the specimen created by cross-

ing over: (a) a selected xj solution, (b) solution y
(i)
t created by summing up a

scaled difference vector between two random specimen (x(1), x(2)) with a third
solution (x(i)). One of the most successful DE configurations is DE/rand/1/bin,



where in each iteration t, each specimen xi
t in the population is selected and

mutated by a difference vector between random specimens x
(i1)
t and x

(i2)
t scaled

by F ∈ R:

y
(i)
t = x

(i)
t + F × (x

(i2)
t − x

(i1)
t ) (3)

Subsequently, y
(3)
t is crossed-over with xbest

t by binomial recombination:

ui
t = Binp(xbest

t ,y
(i)
t ) (4)

Finally, the new location ui
t replaces original xi

t iff it provides a better solution
in terms of the objective function f :

ui
t =

{
ui
t if f(ui

t) < f(xi
t)

xi
t otherwise

(5)

Adaptive PSO approaches. While a basic version of the PSO algorithm has
many promising features (i.e. good quality of resutls, easiness of implementation
and parallelization, known parameters values ensuring theoretical convergence)
it still needs to have it parameters tuned in order to balance its exploration vs.
exploitation behavior [28].

In order to overcome those limitations a two–stage algorithm has been pro-
posed [28]. That algorithm switches from an exploration stage into an exploita-
tion stage, after the first one seems to be “burned out” and stops bringing
much improvement into the quality of the proposed solution. Another adaptive
approach that has been proposed for the PSO [26], identifies 4 phases of the al-
gorithm: exploration, exploitation, convergence, and jumping out. The algorithm
applies fuzzy logic in order to assign algorithm into one of those 4 stages and
adapt its inertia (ω), cognitive (c1) and social (c2) coefficients accordingly. Fi-
nally, a heterogeneous self-adapting PSO has been proposed [15], but it has been
limited by its usage only of the swarm based approaches.

PSO and DE Hybridization. While DE usually outperforms PSO on the
general benchmark tests, there are some quality functions for which the PSO is
a better choice, making it worthwhile to create a hybrid approach [2, 22].

Initial approaches on hybridizing PSO and DE consisted of utilizing DE mu-
tation vector as an alternative for modifying random particles coordinates, in-
stead of applying a standard PSO velocity update [6,23]. Another approach [16],
consists of maintaining both algorithms in parallel and introducing an informa-
tion sharing scheme between them. A similar approach can be found in [25] with
additional random search procedure. PSO and DE can also be combined in a
sequential way [7, 13]. In such an approach first the standard PSO velocity up-
date is performed and subsequently various types of DE trials are performed on
particle’s pbest location in order to improve it further.



3 Generalized Particle Swarm Optimization

This article follows the approach set for a social simulation experiment [17], by
generalizing PSO velocity update formula (eq. (2)) into a following form (with
I being and indicator function):

vit+1 =ω · vit + c1 · (pibest − xi
t)

+

|neighborhood|∑
i=1

|particles|∑
j=1,j 6=i

I(jth is ith neighbor)c′j · (p
j
best − xi

t)

+

|neighborhood|∑
i=1

|particles|∑
j=1,j 6=i

I(jth is ith neighbor)c′′j · (x
j
t − xi

t)

(6)

In that way the social component extends into incorporating data from mul-
tiple neighbors and neighborhoods. The other part of generalization is not im-
posing an identical neighborhood structure over all particles, but letting each
particle decide on the form of neighborhood. That way we take advantage of
the agent-like behavior of swarm algorithms, were each individual is making its
own decisions on the basis of simple rules and knowledge exchange (the other
particles do not need to know behavior of a given particle, only its positions and
sampled function values).

Proposed approach would be unfeasible if one would need to set up all c′j ’s and
c′′j ’s to individual values, therefore we would rely on existing particles templates,
where either all those coefficients would take the same value or most of them
would be equal to zero. Our approach defines c′j and c′′j as functions.

In order to test the proposed generalized approach we have implemented six
distinctive types of particles, coming from the following algorithms: Standard
PSO (SPSO), Fully-Informed PSO (FIPSO), Charged PSO (CPSO), Unified
PSO (UPSO), Differential Evolution (DE). Remainder of this section presents
how each approach fits within the proposed GPSO framework.

Standard Particle Swarm Optimization. SPSO particle acts according to
the rules of PSO described in Section 2 with a local neighborhood topology.
Therefore, the I function defining the neighborhood takes a following form:

I(jth is ith neighbor) =


1 |i− j| ≤ k

1 |i− j| ≥ |particles| − k

0 ∼
(7)

Particle changes its direction using lbest location. Therefore, all values of c′j’s
and c′′j’s are equal to 0 except the one corresponding to the particle with the
best pbest value in the neighborhood.

c′j =

{
0 f(pjbest) > f(lbest)

U(o, cc2) f(pjbest) = f(lbest)
(8)



Fully-Informed Particle Swarm Optimization. FIPSO particle updates its
velocity in another way than SPSO [14]. FIPSO tends to the location designated
by all of its neighbors. All best solutions found so far by individual particles
in neighborhood are considered. Appropriate weighing of solutions is applied.
FIPSO particles utilize a complete neighborhood. Therefore the indicator func-
tion I is always equal to 1. The particle is parametrized with c, a single attraction
coefficient. Individual c′j ’s (and c1) take the following value:

c′j =

∑|particles|
i=1 pjbest · U [O,

c

|particles|
]∑|particles|

i=1 U [0,
c

|particles|
]

(9)

Charged Particle Swarm Optimization. CPSO particle has been created for
the dynamic optimization problems [4] and is inspired by the model of an atom.
CPSO recognizes two particle types: neutral and charged. The neutral particles
behave like SPSO particles. Charged particles, have a special component added
to the velocity update equation. A charged particle has an additional parameter
q controlling the repulse:

c′′j = − q2

|xi
t − xj

t |2
(10)

Charged particles repulse each other, so an individual sub-swarms are formed
(as imposed by the neighborhood), which might explore areas corresponding to
different local optima.

Unified Particle Swarm Optimization. UPSO particle is a fusion of the
local SPSO and the global SPSO [18]. The velocity update formula includes
both lbest and gbest solutions. In order to express that unification of global and
local variants of SPSO the I indicator function takes the following form:

I(jth is ith neighbor) =


1 |i− j| ≤ k

1 |i− j| ≥ |particles| − k

1 p
(j)
best is gbest

0 ∼

(11)

Thus, there are two co-existing topologies of the neighborhood, which justifies
the choice of the general formula for the GAPSO (cf. eq. (6)).

Differential Evolution within the GPSO framework. While Differential
Evolution (DE) [21] is not considered to be a swarm intelligence algorithm its
behavior might be also fitted within the proposed framework GPSO. The reason
for that is the fact that within the DE (unlike other evolutionary approaches)
we might track a single individual as it evolves, instead of being replaced by its
offspring.



DE/best/1/bin configuration and DE/rand/bin configuration are somewhat
similar to the PSO with a gbest and lbest approaches, respectfully. The most
important differences between DE and PSO behavior are the fact, that:

– DE individual always moves from the best found position (pbest in PSO),
while PSO particle maintains current position, regardless of its quality,

– DE individual draws the ’velocity’ (i.e. difference vector) from the global dis-
tribution based on other individuals location, while PSO particle maintains
its own velocity.

Therefore, DE individual i movement might be expressed in the following
way:

x
(i,t+1)
test = Bin(ωv + (pbest − x

(i,t)
test ), gbest) (12)

where v follows a probability distribution based on random individuals’ locations
prand1best and prand2best ) and Bin is a binomial cross-over operator.

4 Adaptation scheme

Different particle types perform differently on various functions. Moreover, dif-
ferent phases exists during optimization process. Some particle types perform
better at the beginning, some perform better at the end of algorithm. Optimal
swarm composition should be designated in real-time. Swarm composition is
modified by changing behavior of each particle. Principle of work is presented
below.

The main idea is to promote particle types (behaviors) that are performing
better than others. Adaptation is based on quality of success. This approach can
be described as roulette with probabilities proportional to success measure.

Let’s assume that we have P particle types. Each particle changes its behavior
every Na iterations. Behavior is randomly chosen according to determined list of
probabilities (P probabilities are given corresponding to P particle types). Each
particle has the same vector of probabilities. At the beginning all probabilities
are set to 1

P . Each Na iterations probabilities vector is changing (adapting)
according to the following scheme.

The average value of successes per each particle’s type from the last Na

observations is determined. Value of success zst in iteration t for particle s is
presented in the following equation:

zst = max(0,
f(psbest)− f(xs

t )

f(psbest)
) (13)

Let swarmp be subswarm of p type particles from whole swarm. It is neces-
sary to take into account all particles from swarmp. So the average success ẑp of
given swarmp is obtained from Sp ∗Na values, where Sp is the size of swarmp.
See the following equation:



ẑpt =
1

Sp ∗Na
∗

T−Na∑
t=T

∑
s∈swarmp

zst (14)

This procedure produces P success values. Let us label them as z1, z2, . . . , zP .
Let Z be sum of given success values: Z =

∑P
p zp. So required vector of prob-

abilities is [ z1Z , z2
Z , . . . , zP

Z ]. Better average success induces grater probability of
assigning given behavior to each particle.

Special rule has been proposed: at least one particle for each behavior has to
exists. It prevents behaviors for being excluded.

5 Experiment setup

In order to test idea of the GAPSO algorithm an environment has been im-
plemented in Java1. It consists of individual particles behaviors, an adaptation
scheme, a restart mechanism, hill-climbing local optimization procedure for pol-
ishing the achieved results, and a port to the test benchmark functions. Tests
have been performed on a 24 noiseless test functions from BBOB 2017 bench-
mark2 with the use of COmparing Continuous Optimizers (COCO) dedicated
platform. Algorithms have been tested on 5D and 20D functions.

Table 1. Individual algorithms parameters.

Algorithm Parameters Settings Reference

SPSO ω : 0.9; c1, c2 : 1.2 [5]
CPSO ω : 0.9; c1, c2 : 1.2 [4]
FIPSO ω : 0.9; c : 4.5 [14]
UPSO ω : 0.9; c1, c2 : 1.2, u : 0.5 [18]

DE crossProb : 0.5; varF : 1.4 [21]

Table 2. Framework parameters

Parameter Value

swarm size (S) 30
number of neighbors (k) 5

generations (G) 106

number of PSO types (P ) 5
generations to adapt (Na) 10

generations to restart particle (Nrp) 15
generations to restart swarm (Nrs) 200

Parameters. General framework setup has been tuned on a small number of
initial experiments. While the parameters of individual optimization agents has
been chosen on the state-of-the-art literature. All parameters values are pre-
sented in Tables 1 and 2. Five types of particle’s behavior have been considered
within the GAPSO framework, and as individual basic algorithms for compari-
son: SPSO, CPSO, UPSO, FIPSO, and DE.

Restarts. In order to fully utilize the algorithms’ potential within each of the
tested methods a particle is restarted if for Nrp iterations at least one of these 2
conditions persisted: (a) particle is its best neighbor, (b) particle has low velocity

1 https://bitbucket.org/pl-edu-pw-mini-optimization/corpoalgorithm
2 http://coco.gforge.inria.fr/



Fig. 1. Comparison of individual algorithms performance for all functions in 5 and 20
dimensions.

(sum of squares of velocities in each direction is smaller than 1). Additionally,
the whole swarm is restarted (each particle that belongs to it is restarted), if
value of best found solution has not changed since Nrs ·D, where D is dimension
of function being optimized.

Local optimization. Finally (both in GAPS and individual approaches), be-
fore swarm restart and after the last iteration of the population based algorithms
a local hill-climbing algorithm is used for 1000D evaluations, initialized with the
best found solution.

6 Results

Results of the experiments are presented on the figures generated within BBOB
test framework, showing percentage of optimization targets achieved on a log
scale of objective function evaluations. Experiments were carried out on 24 5-
and 20-dimensional benchmark functions, which are widely adopted in global
optimization algorithms.

Left part of Figure 1 shows efficiency of 5 algorithms used in GAPSO but
tested independently for 5-dimension functions. It can be observed that DE is
coinciding to optimum faster than others. Efficiency of DE is more noticeable
when 20-dimensions functions are evaluated (right part of Figure 1). Important
observation for further experiments is performance of FIPSO which is the worst
algorithm according to given measures. In next experiments DE, FIPSO and
proposed by authors GAPSO will be compared.

Subsequent charts (see Figure 2) correspond to experiments carried out on
selected algorithms with specified functions. In particular cases, differences in
the assessment of the effectiveness of algorithms can be observed. Left part of
Figure 2 shows advantage of DE algorithm in optimization 5-dimension func-
tions f19-14 (functions with high conditioning and unimodal). Another case is



Fig. 2. Comparison of the best (DE) and the worst (FIPSO) individual algorithms
with GAPSO for functions with high conditioning and unimodal in 5D (top) and multi-
modal functions with adequate global structure in 20D (right).

Fig. 3. GAPSO performance compared with the best (DE) and the worst (FIPSO)
individual algorithms for all functions in 5D and 20D.

show in right part of Figure 2 where FIPSO algorithm for 20-dimension func-
tions f15-f19 (multi-modal with adequate global structure) is performing best.
Proposed GAPSO algorithm maintains level of performance to bests algorithms.
The last experiment will be attempt of generalization of results associated with
all functions for better evaluation of GAPSO performance. Results are shown in
Figure 3. Experiments were conducted on all functions in 5 dimensions and 20 di-
mensions. Averaged results indicate that GAPSO is the most effective algorithm.
Figures 4 and 5 present comparison of average number of particle’s behaviors
and efficiency of homogeneous swarms for two selected functions. For Rosen-
brock’s function (Figure 4) DE swarm is significantly better than other kind of
swarms and GAPSO algorithm adaptation method leads to greater number of
DE particles in swarm. On the other hand, in case when for instance homoge-
neous DE swarm performance is the worst from among all the other PSO kinds



Fig. 4. Average number of particles kinds in swarm for Rosenbrock function compared
with individual algorithms performance.

Fig. 5. Average number of particles kinds in swarm for Schaffer function compared
with individual algorithms performance.

(see Figure 5) GAPSO swarm contains significantly lower number of DE parti-
cles. It indicates that proposed adaptation methods control swarm composition
according to particular optimization function and it depends on individual PSO
performance on this function. Results for all particles behaviors except DE are
quite similar, so there is no noticeable difference between number of particles of
particular kind.

For the sake of space limits we provide only aggregated results in Table 3.
Detailed outcomes can be found in [1]. GAPSO obtained best results (in terms
of number of function evaluation) for 10 (5D) and 8 (20D) functions (out of
24). 7 of those results are statistically significantly better. None of the other
algorithms were statistically significantly better than GAPSO for any function.
These results show that proposed algorithm not only adapted to reach results as
good as best particle types, but also has ability to outperform its components.



Table 3. Aggregated results for 15 independent runs on 24 noiseless test functions
from BBOB 2017 benchmark. Number of functions for which given algorithm yielded
best results (in term of average number of function evaluations) is presented in best
columns. Numbers in brackets show how many of results are statistically significantly
better according to the rank-sum test when compared to all other algorithms of the
table with p = 0.05. Target reached is the number of trials that reached the final target:
fopt + 108.

5D 20D

algorithm best target reached best target reached

CPSO 2 (0) 217 1 (0) 85

SPSO 1 (0) 221 2 (0) 91

FIPSO 2 (0) 211 4 (0) 83

UPSO 3 (0) 214 3 (0) 87

DE 6 (0) 173 4 (1) 117

GAPSO 10 (0) 172 8 (7) 120

Furthermore, algorithm stability depending on different initial behavior prob-
abilities vector was examined. 7 types of vectors were considered: uniform (each
behavior with the same probability), randomly generated vector and 5 vectors
(one per each behavior) with probability equals 1 to one behavior and 0 for all
other. Standard deviations obtained through all approaches on benchmark func-
tions were not significantly different than standard deviations for each approach
separately. For all above options just after about 100 generations (10 adaptation
procedures) numbers of particles with particular behaviors are nearly the same.
It shows proposed method’s ability to gaining equilibrium - optimal (from the
algorithm’s perspective) behaviors numbers independently of the initial state
(probabilities vector).

Initially, an experiment including also an Orthogonal Learning PSO (OLPSO)
[24], as an behavior in GAPSO was also made. However, because of slow OLPSO
convergence and chosen adaptation scheme, the obtained results were not satis-
fying [1].

7 Conclusions and future work

The proposed generalized view on the Particle Swarm Optimization made it
possible to introduce various types of predefined behaviors and neighborhood
topologies within a single algorithm. Including an adaptation scheme improved
the overall performance over both DE individuals and PSO particles types on
the test set of 24 quality functions. The adaptation scheme correctly promoted
behaviors (particles) which performed well on a given type of a function. It
remains to be seen what other types of behaviors could be successfully brought
into the GAPSO framework.

Our future research activities shall concentrate on testing more types of par-
ticles and detailed analysis about their cooperation by observing interactions
between different particles behaviors in each generation. It would be especially



evaluate a performance of some quasi-Newton method, brought into the frame-
work of GPSO, as it could utilize the already gathered samples of the quality
(fitness) function. Furthermore, other adaptation and evaluation schemes can be
considered and compared with proposed method.
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