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Abstract. The paper presents a novel evolutionary algorithm (EA) for
melodic line harmonization (MLH) - one of the fundamental tasks in
music composition. The proposed method solves MLH by means of a
carefully constructed fitness function (FF) that reflects theoretical mu-
sic laws, and dedicated evolutionary operators. A modular design of the
FF makes the method flexible and easily extensible. The paper provides
a detailed analysis of technical EA implementation, its parameteriza-
tion, and experimental evaluation. A comprehensive study proves the
algorithm’s efficacy and shows that constructed harmonizations are not
only technically correct (in line with music theory) but also nice to lis-
ten to, i.e. they fulfill aesthetic requirements, as well. The latter aspect
is verified and rated by a music expert - a harmony teacher.
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1 Introduction

The majority of real-life optimization problems are associated with engineering,
however, certain aspects of creative activities, such as painting, music composi-
tion, poetry, or film making, can be modeled as optimization problems [4,19], as
well. In this paper, one such task – the melodic line harmonization is considered.

The melodic line harmonization is a part of the process of composing music
and is about determining the musically appropriate chord accompaniment for a
given melody. It is a creative process that requires intuition and experience of
the musician, although, the music theory defines certain strict constraints and
rules which the composed music should follow in order to sound well [21]. In
this perspective, melodic line harmonization can be treated as an optimization
problem with maximizing the number of fulfilled constraints.

Evolutionary Algorithms (EAs), thanks to their effectiveness, are widely ap-
plied to various practical problems [5, 11, 17, 27]. This paper shows that EAs
can also be successfully adapted to the field of art and create formally correct,
well-structured, and musically aesthetic melody harmonizations.
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2 Related work

Algorithmic music composition is a well-studied area of research with various
computational intelligence methods proposed in the literature [13, 25]. There
are several research paths in this domain and researchers focus on various as-
pects of music generation, for instance, style transfer [9], imitating a particular
composer (e.g. F. Chopin [15,16]), real-time music accompaniment [12], timbre,
pitch, rhythm, chord [14]. In this paper, we consider the problem of melodic line
harmonization which is an essential part of the music composition process. The
definition and details of the examined problem are presented in Section 2.1.

The most common approach to solving this task is learning harmonizations
based on existing melody lines using neural networks [6, 8, 10], which requires a
set of training data and is usually limited to a particular genre or music style,
e.g. Bach chorales [8]. Music composition can also be approached with Markov
chains [3, 18, 26] or evolutionary algorithms [7, 20, 22]. Evolutionary approaches
propose various representations of melodic line and fitness function definitions
to assess evolving solutions. Moreover, in [7] a multiobjective genetic algorithm
is constructed which, for a given melody, generates a set of harmonic functions
without adding new melodic lines.

Due to slightly different problem definitions and the lack of well-established
benchmarks, making a direct comparison between methods is usually difficult.
Thus, the evaluation process is often performed by human experts who rate the
obtained results (music pieces). This approach is also taken in this paper.

2.1 Melodic Line Harmonization

Harmonization of a melodic line is one of the fundamental tasks in music. The
input data in a harmonization problem is one melodic line, and the product of
harmonization is usually four melodic lines (voices): soprano (the highest), alto,
tenor, bass (the lowest). A given (input) melodic line could be also accompanied
by harmonic functions which are added to every or almost every note in that
line. These functions determine which notes can be included in the chord formed
across all four lines (vertically).

Harmonization of a melodic line depends not only on the composer’s creativ-
ity but also on various theoretical rules derived from music theory. These rules
regulate (1) the form of individual melodic lines, (2) chord’s construction, and
(3) how successive chords should be connected to each other.

The problem considered in this paper is a harmonization of a soprano line,
with harmonic functions added to each note. The solution is created based on a
selected set of theoretical rules for melodic line harmonization.

2.2 Contribution

The main contribution of the paper includes: (1) a novel evolutionary algorithm
capable of designing correct melodic line harmonizations; (2) a specially designed
fitness function that reflects theoretical music rules and can be easily tuned
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toward certain aspects of the output harmonization; (3) an extensive evaluation
of the proposed method which shows its quality and robustness; (4) a detailed
analysis of the algorithm’s performance and parameterization.

3 Evolutionary Harmonization

3.1 The search space and the initial population

Not every note can be used in a created chord. Harmonic functions define which
notes fit into a chord and which do not. Harmonizations containing notes in
chords that do not correspond to the required functions are incorrect.

After receiving the input (soprano line with harmonic functions), for each
unique function, a set of all possible chords that fulfill that function is created.
Created harmonizations are, therefore, not generated from individual notes but
from the whole chords. The above rules significantly narrow down the search
space, however, due to still many possible arrangements of notes in each chord,
the number of potential solutions is still too large (between 3l - 7l, where l is a
harmonization length) to evaluate all of them. Examples of created chords for
one of the functions are shown in Fig. 1.

Fig. 1: Various chords for function SII with a fixed (green) note in soprano.

Individuals are represented as 4 sequences of notes, one per each harmonized
voice. The chord is formed by the notes located across all four voices (vertically).
Individuals in the initial population are created randomly. Soprano notes are
completed to a randomly selected chord satisfying the following two conditions:

(*) the chord corresponds to the function assigned to the completed note,
(**) the note given in the input voice is located in the chord in the same voice.

3.2 Next generation population

After the generation of the initial population, the EA is run for a predefined
number of n generations. In each generation, first se elite (i.e. currently best)
individuals are promoted from the previous generation without any adjustments,
so as to ensure that the best individuals found in the entire run of the algorithm
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will not be lost. The rest of the population is generated by means of selection pro-
cedure and genetic operators (mutation and crossover), following Algorithm 1.

1 GenerateNewPopulation (P)
2 CalculateFitnessValues(P ) // calculates fitness of each individual
3 Pnew ← GetElite(P, se) // population of new individuals
4 while |Pnew| < |P | do
5 c1 ← Selection(P )
6 if rand([0,1]) < pc then // crossover
7 c2 ← Selection(P )
8 cnew = Crossover(c1, c2)
9 else

10 cnew ← c1
11 end
12 cnew ← Mutation(cnew)
13 Pnew = Pnew ∪ {cnew}
14 end
15 return Pnew

Algorithm 1: Next generation population procedure.

3.3 Selection method

Selection of individuals from the population is performed in a ts-tournament
with a roulette, i.e. first ts individuals are uniformly sampled with replacement
to participate in the tournament. The drawn individuals are sorted from best to
worst according to their score. Let’s denote by ci, i = 1, . . . , ts the i-th ranked
individual. The chance of winning the tournament by ci is calculated as follows:

p(ci) =


ps if i = 1

(1−
∑i−1

j=1 p(cj)) · ps if 1 < i < ts

(1−
∑i−1

j=1 p(cj)) if i = ts

(1)

where ps ≥ 0.5 is the so-called selection pressure.

3.4 Mutation

Generated harmonizations are built using the whole chords, rather than indi-
vidual notes. For this reason, mutations are also performed on the entire chords
and each chord in the harmonization is mutated with the same probability equal
to pm

l , where l is the length of the harmonization (the number of notes in the
input melodic line) and pm is mutation coefficient. Mutation of a chord consists
in replacing it with another randomly selected chord that satisfies conditions
(*)-(**).
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3.5 Crossover

Crossover is performed with probability pc. Two crossover methods are proposed
and tested: the classic operator and the one-point operator. Analogously to muta-
tion, the crossover is performed using whole chords rather than individual notes.
Both crossover operators are presented in Algorithm 2, where c[i], i = 1, . . . , l is
the chord located at position i in a harmonization of length l.

1 Crossover1 (c1, c2)
2 for i ∈ [1, . . . , l] do
3 if rand([0,1]) < 0.5 then
4 c[i] = c1[i]
5 else
6 c[i] = c2[i]
7 end
8 end
9 return c

1 Crossover2 (c1, c2)
2 k ← rand(1, . . . , l)
3 for i ∈ [1, . . . , l] do
4 if i < k then
5 c[i] = c1[i]
6 else
7 c[i] = c2[i]
8 end
9 end

10 return c

Algorithm 2: Crossover: left - classic method, right - one-point method.

3.6 Fitness function

The fitness function is based on music theory and is composed of 22 rules of
harmonization, taken from a harmony textbook [24]. Similar rules can be found
in [2, 23]. Each rule is assigned a weight (positive or negative) that affects the
final score of the generated harmonization. Examples of violations of three of
these rules are shown in Fig. 2. A detailed description and implementation of all
rules can be found in a project repository [1].

The fitness function can be divided into 3 main modules:

1. Strong constraints Cs (strong penalty terms) - stemming from the rules that
must be strictly met in the created harmonization to be considered correct.

2. Weak constraints Cw (weak penalty terms) - derived from rules that do not
have to be strictly satisfied in the created harmonization, but their non-
fulfillment lowers the harmonization assessment.

3. Aesthetic value Va (reward terms) - the rules specifying chord arrangements
or connections between chords that improve the harmonization sound.

The fitness function ft for individual c has the following form:

ft(c) = Va + Cw + (p · t)Cs,

Cs =

ms∑
i=1

ϕi(c), Cw =

mw∑
j=1

χj(c), Va =

ma∑
k=1

ψk(c),
(2)

where ϕi(c) ≤ 0 is the penalty for not fulfilling strong constraint i, i = 1, . . . ,ms,
χj(c) ≤ 0 is the penalty for not fulfilling weak constraint j, j = 1, . . . ,mw,
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ψk(c) ≥ 0 is the reward associated with the rule k, k = 1, . . . ,ma, (ms = 9,
mw = 9, ma = 4), t ≤ n is the generation number, and p is a constant parameter.
Please note that during the evolution, the fitness function value is calculated
for each individual regardless of the fulfillment of the strong constraints. These
constraints, however, define the correctness of each individual.

(a) Strong constraint: At
least one voice has to move
in different direction than
other voices.

(b) Weak constraint: A
maximal interval the bass
can take in two consecutive
moves is tenth.

(c) Weak constraint: There
should not be septim interval
between two consecutive notes
in one voice.

Fig. 2: Examples of rules violations.

4 Experimental results

Since there are no standard benchmarks for the considered problem we decided
to use a set of exercises from the harmony textbook [24] as a test set (similar
exercises can be found in other harmony textbooks, e.g. [2, 23]). The selected
problems were divided into 3 groups based on their complexity and length:

1. long examples (about 20 chords), using only basic functions,
2. short examples (about 10 chords), with more complicated functions,
3. long examples (about 20 chords), with more complicated functions.

4.1 Algorithm parametrization

The choice of the evolutionary parameters is crucial for the algorithm perfor-
mance. The values of the following parameters were selected based on preliminary
tests: population size (sp), tournament size (ts), elite size (se), selection pressure
(ps), mutation coefficient (pm), crossover method and crossover probability (pc),
number of generations (n).

The following baseline values were selected: sp = 1000, ts = 4, se = 3, ps =
0.7, pm = 1, classic crossover with pc = 0.8, n = 5000. Individual parameters
were then optimized (with the remaining parameters frozen) to select the best
values for each of them. The tests were run on 3 different examples, one from
each group. These examples were different from the ones used as the test set.
Each test was repeated 5 times with different seed values for the random number
generator.
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Population size (sp). The following population sizes were tested: 10, 100, 500,
1000, 1750, 2500, 3500, 5000. As expected, for smaller population sizes, the algo-
rithm performed noticeably worse because the solution space was not searched
sufficiently. For larger values (above 1000), the results were not substantially dif-
ferent from each other. Results for an example from the third group are presented
in Fig. 3a. The resulting size of the population was chosen as 1000.

(a) Population sizes (logarithmic scale). (b) Selection pressures.

(c) Mutation coefficients - crude estima-
tion.

(d) Mutation coefficients - fine-tuning.

Fig. 3: Parameter tuning averaged over 5 runs for an example from the third
group. The minimum and maximum are the worst and best fitness function
values, resp., for the individuals returned in 5 runs. Empty shape (e.g. ◦) denotes
that the algorithm did not return any correct solution over 5 runs and filled shape
that at least one solution was correct.

Tournament size (ts). Four values of tournament size, equal to 2, 4, 8, and
10 were tested (see Table 1). The results for ts = 4 and ts = 8 were similar to
each other. At the same time, ts = 4 led to higher standard deviation of the
population (larger diversity of individuals) and was therefore selected for the
final experiments.
Elite size (se). Four values of elite size, equal to 0, 3, 5 and 10 were tested.
The results are presented in Table 1. The algorithm with the elite mechanism is
more stable and achieves better results. The value of se = 3 was finally selected.
Selection pressure (ps). This parameter describes the probability of the best
individual winning the tournament. Values between 0.5 and 1 with a step of 0.1
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Table 1: Fitness function with respect to the tournament size (top part) and the
elite size (bottom part).

Example ts = 2 ts = 4 ts = 8 ts = 10
Mean Min Max Mean Min Max Mean Min Max Mean Min Max

1 11 -150 165 355 355 355 343 305 355 335 305 355
2 188 110 210 210 210 210 210 210 210 210 210 210
3 -171 -370 155 188 180 210 197 175 210 174 95 210

Example se = 0 se = 3 se = 5 se = 10
Mean Min Max Mean Min Max Mean Min Max Mean Min Max

1 152 75 280 355 355 355 324 250 355 325 305 355
2 110 30 210 210 210 210 210 210 210 210 210 210
3 43 -30 125 188 180 210 187 175 210 206 190 210

were tested. Results of the algorithm are presented in Fig. 3b. The higher the
value of ps, the lower the standard deviation in the population. Too low standard
deviation can have a negative impact on the results due to the lack of diversity
in the population. At the same time, an increase of ps results in an increase of
the percentage of correct individuals in the population, as shown in Table 2.
Finally, to balance the value of standard deviation and the percentage of correct
individuals, ps = 0.8 was chosen.

Table 2: Percentage of correct individuals in the population, in relation to ps.

Example ps
0.5 0.6 0.7 0.8 0.9 1

1 0.03 0.14 0.28 0.37 0.37 0.46
2 0.02 0.8 0.18 0.27 0.32 0.37
3 0.01 0.06 0.16 0.25 0.32 0.38

Mutation coefficient (pm). Values between 0 and l were tested, where l is the
harmonization length (number of chords), with a step equal to 1. The best results
were achieved with pm = 0, 1, 2. For higher values, the results were significantly
weaker, and for the highest ones, the returned results were incorrect.

As a further refinement of pm, the values from 1 to 2 with step 0.1 were
tested, which led to the final selection of pm = 1.1. The results for an example
from the third group are presented in Fig. 3c (initial tests with larger values)
and Fig. 3d (fine-tuning tests).
Crossover method and probability (pc). To select the crossover method
and its probability, various probability values, between 0 and 1 with a step of
0.1, for the two crossover versions were tested. For each value, tests were run
thirty times and the values for all three tuning examples were normalized using
min-max normalization. The average results are shown in Table 5.

The algorithm achieved similar results for values between 0.4− 0.8. For this
reason, t-Student tests were performed to select the best values for each model
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Table 3: Normalized mean values of crossover tuning procedure.
pc 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mean, classic 0.86 0.84 0.9 0.88 0.91 0.89 0.91 0.92 0.93 0.88 0.9
mean, one-point 0.86 0.9 0.9 0.89 0.91 0.93 0.93 0.95 0.96 0.95 0.95

with a significance level of 0.05. A value of 0.8 was selected for both models. In the
last step, the t-Student test was conducted between two crossover variants (both
with the chosen probability of 0.8) with hypothesis H0: “the results obtained are
not significantly different” and the resulting p-value=0.113. Finally, one-point
model with pc = 0.8 was selected.
Generation number (n). This parameter was chosen as a compromise between
the quality of results and the running time. The value of n = 5000 was selected
from the set {1000, 3000, 5000, 10000}.

The final selection of the steering parameters was as follows: sp = 1000,
se = 3, ts = 4, ps = 0.8, pm = 1.1, pc = 0.8 (one-point crossover), n = 5000.

4.2 Algorithm efficacy

The efficacy of the algorithm was checked on 9 samples taken from the harmony
textbook [24]. For each sample, the algorithm was able to find the correct solution
in a relatively short time. The generation numbers in which the first correct
solution and the best solution were found, resp. are shown in Table 4. In each
case, the first correct solution was found in less than 90 generations.

The number of generations required to find the correct solution varies be-
tween groups and depends mainly on the length of an example (cf. groups 1 and
2) and, to a lesser extent, the example’s complexity (cf. groups 1 and 3). At the
same time, for more complex problems (group 3) the solution is likely to improve
even after 3500 iterations, which does not happen for easier samples (groups 1
and 2).

4.3 Evaluation by the human expert

The algorithm evaluates harmonizations based merely on their numerical fitness.
Hence, we asked a harmony teacher to assess their aesthetic value, as well. The
evaluation was performed according to a school scale from 1 (lowest score) to
5 (highest score). Out of 9 solutions, 4, 4 and 1 were rated 5, 4.5 and 4, resp.,
with the average grade of 4.67. This means that the solutions are theoretically
and sonically correct. An example solution rated 5 is presented in Fig. 4.

4.4 Algorithm running time

The average running times of the algorithm in three groups are presented in
Table 5. One can observe a quasi-linear relationship between the example length
and the execution time. Harmonizations in the group 2 are obtained in about
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Table 4: The number of generations required to find a solution.

Group no. Example no.
Generation number in which the result was found:

first correct harmonization finally returned
harmonization

Mean Min Max Mean Min Max

1
1 16.6 14 22 208.2 86 343
2 16.8 13 22 268.2 129 744
3 14.8 12 18 218.4 109 397

2
4 8.2 6 10 177.6 27 593
5 3.2 1 5 24 13 36
6 6.8 5 8 826.2 75 3200

3
7 33.6 19 86 1933.6 96 3576
8 19.2 17 22 699.8 249 1224
9 21 18 25 3098.6 2179 3838

Fig. 4: Harmonization created by the algorithm for an example from the third
group. Given line (soprano) is marked in green.

half of the time required for harmonizing samples from groups 1 and 3. On the
other hand, it seems that the degree of the example’s complexity does not affect
the running time - the average times in groups 1 and 3 are similar.

Table 5: The average algorithm’s running time (harmonization time) in seconds.
Group 1 Group 2 Group 3

Mean Min Max Mean Min Max Mean Min Max
531.91 485.47 567.02 225.76 180.66 252.05 536.18 508.68 582.39

4.5 Parameters’ relevance and robustness

The experiments showed that changing some parameters has a greater effect on
the results than changing other parameters. The crossover method, crossover
probability pc, and the selection pressure (ps) have a relatively small impact on
the results. For selection pressure, any value above 0.5 yields satisfactory results.
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In contrast, changes of mutation probability value (pm

l ) have significant im-
pact. The results achieved for mutation coefficient between 1 and 2 are stable,
but increasing pm above 2 results in a gradual results deterioration. The elite
mechanism has been shown to be crucial for the algorithm’s performance. Its lack
causes significant performance degradation and lower repeatability of results.

5 Conclusions

Creating melodic line harmonization is a non-trivial task. In this paper, we
employ EAs to approach this problem. There are two key components of the
proposed algorithm: (a) restriction of the search space (*)-(**) to feasible so-
lutions, and (b) specially-designed fitness function, based on theoretical music
rules, that defines proper harmonizations. The fitness function consists of three
modules: one responsible for the correctness of harmonization and the other two
for its quality. The harmonization process is performed for the whole chords and
likewise the mutation and crossover operators are applied to the whole chords,
not to individual notes.

Harmonizations constructed by the algorithm were evaluated by the harmony
teacher so as to additionally assess their aesthetic properties (sound). All but
one harmonization were rated at least 4.5 on a scale from 1 to 5, with a good
number of them rated 5. This means that in terms of musical quality generated
harmonizations meet all expectations. The algorithm finds the solution quickly
in terms of both the number of generations and the overall computational time.

The modular design of the fitness function allows it to be easily expanded
and modified in the future. Adding more theoretical rules should allow harmo-
nizations to be generated for more advanced and complex harmonic functions.
Moreover, the task definition can be extended to the generation of harmoniza-
tions for melodic lines without the presence of harmonic functions.
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