
Toward Human-level Tonal and Modal Melody
Harmonizations

Jan Myckaa,∗, Adam Żychowskia, Jacek Mańdziuka,b

aWarsaw University of Technology, Warsaw, Poland
bAGH University of Science and Technology, Krakow, Poland

Abstract

This paper considers the problem of automatic music generation (melody
harmonization) with the use of Evolutionary Algorithms (EA), based on the
rules derived from music theory and practice. The rules, whose role is to
ensure the fulfillment of both the formal requirements of harmonization and
its less-formalized aesthetic requirements are encoded in the fitness function
of EA. The fitness function is composed of several modules, each of which
consists of smaller parts corresponding to the implemented music rules. The
above modular design allows for flexible modification and extension of this
function. The way the fitness function is constructed and tuned towards
better quality harmonizations is discussed in the context of music theory and
technical EA implementation. In particular, we show how could generated
harmonizations be modeled by means of adjusting the relevance of particular
fitness function components or extended by adding new components to the
fitness function. The proposed algorithm is tested on two types of music:
tonal and modal. Although tonal and modal harmonizations are significantly
different, the achieved results (assessed by a human expert) indicate that the
constructed harmonizations are both technically and aesthetically correct
(i.e. they adhere to the theoretical rules and are nice to listen to). This
study extends our previously published conference paper [1].

Keywords: evolutionary algorithm, harmonization, music generation

∗Corresponding author
Email addresses: jan.mycka.dokt@pw.edu.pl (Jan Mycka),

a.zychowski@mini.pw.edu.pl (Adam Żychowski), mandziuk@mini.pw.edu.pl (Jacek
Mańdziuk)

Preprint submitted to Journal of Computational Science February 14, 2023

1. Introduction

For centuries, the fine arts have been developed by people and, invari-
ably, a major aspect of this process has been creativity of an artist. For this
reason, Artificial Intelligence (AI) researchers attempt to implement compu-
tational creativity [2] to mimic the creative behaviors of AI agents. One of the
fields in which AI creativity has been intensively developed is music [3]. AI
methods are applied to create new compositions [4] or complement / expand
existing pieces [5]. In both tasks, they managed to demonstrate human-level
performance. Another line of research is the imitation of a particular com-
poser’s style, e.g. F. Chopin [6, 7]. Various AI methods are used for all these
problems, and among the most popular ones are neural networks. However,
the choice of the right method often depends on the detailed analysis of the
considered problem.

One of the basic problems in music is the enrichment of a given melodic
line by adding chords – the so-called harmonization of the melodic line.
Adding new notes is based on the relationship between them and the existing
notes, both vertically (simultaneous sound) and horizontally (time sequence).

In music, there are many types of harmony (and therefore many types
of harmonization of the melodic line) and each of them has a different sonic
character. The most common types of harmony are tonal harmony (the
most popular), modal harmony (used for example for Gregorian chant), and,
among others, jazz harmony (characteristic for jazz music).

Although harmonization is a creative process in which the main role is
played by intuition, talent, and experience of a musician [8], the process is
constrained by various rules resulting from music theory and centuries of
musical practice. An important difference between the harmony types is the
rules of using and combining chords that complement the main melodic line.
Each such type is based on different, though intersecting, rules corresponding
to the type of harmony used. The algorithm proposed in this work applies
AI methods to create suitable harmonization and is based on harmonization
rules defined in music theory. In general, creating music (or other forms of
Art) is considered a challenge for AI agents, as mastery in this field requires
special gifts that are rare even among humans.

1.1. Contribution
The main contribution of this paper is the following: (1) we propose a

novel Evolutionary Algorithm (EA) approach capable of creating melodic

2

line harmonizations that are formally correct, i.e. fulfill music harmoniza-
tion rules; (2) to this end we design a specific module-based fitness function
that can be easily extended or tuned to reflect the desired aspects of the
resulting harmonizations; (3) to demonstrate the efficacy and generality of
the proposed algorithm, we create two sets of rules used in the fitness func-
tion, based on the theory of music harmonization: one for tonal harmony
and the other one for modal harmony (4) both proposed fitness functions
cover not only harmonic but also melodic aspects (voices leading) of created
harmonizations; (5) through modification of the weights of individual com-
ponents of the fitness functions, solutions can be tuned to meet the desired
requirements; (6) the resulting harmonizations are evaluated by a (human)
expert and assessed as both technically correct and possessing human-like
characteristics.

1.2. Extension of the ICCS 2022 conference publication
This article extends our preliminary work on this topic, presented at

ICCS 2022 [1], by considering the harmonization problem in the context
of modal music (as opposed to more straightforward tonal music discussed
in [1]. In effect, this work extends the conference paper in the following 3
major aspects:

• an adjustment of the fitness function for the modal harmonization prob-
lem (Section 5.2),

• analysis of the results generated by the algorithm for modal harmoniza-
tion (Section 7) including a human expert evaluation of these results
(Section 7.4) and an ad-hoc improvement of modal harmonizations by
extending the set of rules encoded in the fitness function (Section 7.5),

• a comparison of the outcomes achieved for tonal and modal harmoniza-
tion (Section 8).

Furthermore, several other parts of the paper, such as Section 4 or Section 9,
have been extended and adjusted to the broader scope of the paper.

2. Problem definition

Harmonization is the process of creating an accompaniment for a given
melody line. The created accompaniment consists of three new melodic lines

3

(voices). Usually, the highest voice (the soprano, the melody) is the base for
harmonization and the other three voices (the alto, the tenor, and the bass)
are to be created. Four notes, one from each voice, form a chord. Creating
harmonization is mainly based on the musician’s experience and intuition.
However, throughout the years many theoretical rules that harmonization
has to fulfill were developed [9, 10, 11]. These rules do not specify how
harmonization is to be constructed, only whether or not the harmonization
is correct.

The aim of the proposed algorithm is to create harmonization fulfilling
selected theoretical rules for tonal or modal harmony, respectively. The har-
monization is generated not for the raw melody, but for the melody extended
with harmonic functions or chord labels assigned to specific notes. These la-
bels determine which notes (pitches) should be used across all the voices.
However, they do not specify the number of these notes or the voices in
which they should be placed.

3. Related literature

The melodic line harmonization problem has been addressed in the litera-
ture using various AI methods. Popular approaches use neural networks [12]
or hidden Markov models [13]. Both papers address the task of harmoniza-
tion of chorales based on J.S. Bach’s style and the resulting harmonizations
occasionally do not follow theoretical musical rules.

The algorithm described in this paper relies on a different method, the
Evolutionary Algorithm (EA), in which the required harmonization rules are
directly imposed by means of a fitness function. Moreover, unlike neural net-
works, EA does not require training, which makes this approach independent
of the composer’s style, implicitly present in the training set.

Another approach, which uses Markov Decision Processes is presented
in [14] and evaluates connections between two consecutive chords. The eval-
uation rules are based on music theory. Yet another work [15] hybridizes
heuristic rules with dynamic programming method.

The use of EAs in the melody harmonization problem has been considered
in a few recent works [16, 17, 18]. In [16] multiobjective genetic algorithm
is proposed which for a given melody generates a set of suitable harmonic
functions, however, without adding new melodic lines. Similarly, in [18], only
chords are created, not entire melodic lines. In [17], the algorithm solves a
broader problem, i.e. not only adds new melodic lines to a given melody but

4

also complements the melody with harmonic functions. Furthermore, the
method uses a wider range of harmonic functions and fewer theoretical rules
than in our approach. The fitness function consists of two parts, the first
one evaluates the created harmonic functions and the other one evaluates the
melodic lines added.

Each of the above-mentioned works considers a slightly different formu-
lation of the harmonization problem which renders a direct comparison im-
possible. Hence, the assessment of the resulting melody lines proposed in
the paper is two-fold: by means of a numerical fitness value assigned by the
algorithm and by a human expert - a harmony teacher.

4. Proposed method

In order to solve the harmonization problem an EA, that maintains can-
didate solutions (population of individuals) is proposed. In each generation,
the currently maintained individuals undergo mutation and crossover oper-
ations. Subsequent generations are composed of individuals with gradually
higher fitness values, i.e. achieve higher evaluations, on average. The core
element of the algorithm is the fitness function that evaluates candidate so-
lutions, which is based on theoretical rules of music harmonization. These
rules may differ depending on the type of harmony one wants to obtain

The algorithm is run for a predefined number of n generations. Afterward,
the best individual in the last population is returned as the final result.

4.1. Problem search space - admissible chords
The input data is the highest voice melodic line with a particular har-

monic function (tonal music) or chord label (modal music) assigned to the
selected notes. This label indicates at least three and at most five notes,
which have to be used in all the voices. If the label indicates only three
notes, one must be doubled, and if five of them, one must be omitted.

In each created chord, the highest note is fixed and derived from the
given melodic line (the soprano). In addition, an ambitus (the lowest and
the highest possible pitch of a voice) is defined for each voice, derived from
the theory. Thus, for each harmonic function/chord label it is possible to
define a set of all admissible chords corresponding to this label. The evo-
lutionary operators (mutation, crossover), as well as the construction of the
initial population, are based on these pre-created sets of admissible chords
associated with particular labels.

5

4.2. Stopping condition
The algorithm generates consecutive populations. For one run there is a

predefined number of generations that the algorithm has to perform. The
algorithm ends when the last population is generated and the returned result
is the best individual from the last population.

4.3. Population generation process
Each initial candidate harmonization is in the form of a sequence of admis-

sible chords. Each chord in a sequence must satisfy the two basic conditions:

(i) the chord corresponds to the harmonic function/chord label assigned
to the completed note,

(ii) the note given in the input voice is located in the chord in the same
voice (the soprano/melody).

It is worth noticing that the construction of a solution is performed by ma-
nipulating the whole chords, not single notes.

The first population is generated randomly. Each individual consists of
randomly chosen chords from a pre-defined set of all admissible chords which
fulfill conditions (i)-(ii). In each subsequent generation, first se elite (i.e.
currently best) individuals are promoted from the previous generation with-
out any adjustments, so as to ensure that the best solutions found in the
entire run of the algorithm will not be lost. The rest of the population is
generated by means of a selection procedure and genetic operators (mutation
and crossover), according to Algorithm 1.

4.4. Selection method
The selection of individuals is performed in a tournament of size ts with a

roulette element added. In the first step, ts individuals are drawn uniformly
with replacement from the population and their fitness score is calculated.
Let’s define by xi the i-th individual of the tournament according to the
fitness score ranking. Its probability of winning the tournament p(xi) is
calculated according to (1):

p(xi) =


ps if i = 1

(1−
∑i−1

j=1 p(xj)) · ps if 1 < i < ts

(1−
∑i−1

j=1 p(xj)) if i = ts

(1)

where ps ≥ 0.5 is the so-called selection pressure.

6

1 GenerateNewPopulation (P)
2 CalculateFitnessValues(P) // calculates fitness of each

individual
3 Pnew ← GetElite(P, se) // population of new individuals
4 while |Pnew| < |P | do
5 c1 ← Selection(P)
6 if rand([0,1]) < pc then // crossover
7 c2 ← Selection(P)
8 cnew = Crossover(c1, c2)
9 else

10 cnew ← c1
11 end
12 cnew ← Mutation(cnew)
13 Pnew = Pnew ∪ {cnew}
14 end
15 return Pnew

Algorithm 1: Next generation population procedure.

4.5. Mutation and crossover
Each individual, before being added to a new generation, undergoes mu-

tation. Each chord in a given harmonization is mutated with probability
pm
l

, where l is the length of harmonization (number of chords in created
harmonization) and pm is the mutation coefficient (algorithm’s parameter).
Mutating a chord consists of its replacement by another chord uniformly
sampled from the pre-defined set (all chords that meet requirements (i)-(ii)
– see Algorithm 2. An example of mutation is presented in Figure 1a.

1 Mutation (c)
2 for i ∈ [1, . . . , l] do
3 if rand([0,1]) < pm

l

then
4 c[i] = mutate(c[i])
5 end
6 end
7 return c

Algorithm 2: Mutation.

1 Crossover (c1, c2)
2 k ← rand(1, . . . , l)
3 for i ∈ [1, . . . , l] do
4 if i < k then
5 c[i] = c1[i]
6 else
7 c[i] = c2[i]
8 end
9 end

10 return c
Algorithm 3: Crossover.

7

The algorithm uses a one-point crossover which happens with probability
pc. In the crossings of the two sampled individuals the whole chords are
considered, not the single notes. Let us define by c[i], i = 1, . . . , l the chord
located at the i-th position of harmonization c. One-point crossover com-
bines the initial part of one harmonization with the subsequent part of the
other harmonization – see Algorithm 3. The use of a one-point crossover
offers a chance to preserve already correctly created (highly-evaluated) har-
monization fragments. An example of crossover application is presented in
Figure 1b.

(a) Example of mutation. The second chord has changed.

(b) Example of one-point crossover with k = 2.

Figure 1: Examples of mutation and crossover methods.

4.6. Fitness function – a generic construction
The fitness function is applied to evaluate individuals with respect to

fulfilling harmonization rules (referring to chord building) and certain music
theory rules (e.g. voice leading or fluidity of the melodic line). An important
feature of the fitness function is its modular design, which allows its easy
extension by means of adding new rules if required. It is worth noticing in
this context, that the rules used in this paper for the construction of the
fitness function do not cover the entire set of existing rules, but only a part

8

of it. A modular design of the fitness function allows for adding/deleting the
rules with ease.

Each rule (sub-function) used in the construction of the fitness function
is assigned a value that contributes to the final score of the generated har-
monization. These values indicate the importance of particular rules, due to
their respective impact on the resulting fitness function evaluation. Although
in musical practice, there is a certain level of subjectivity in evaluating the
quality of the constructed harmonization, the essential evaluation based on
a general position of the music community is usually unequivocal. The base
values associated with particular rules included in the fitness function have
been chosen so as to assure their compatibility with the evaluation used in
musical practice. The fitness function can be divided into the following 3
main modules.

1. Strong constraints Cs (high penalty terms) - constraints stemming from
the rules, that must absolutely be satisfied in the created harmonization
for it to be considered correct.

2. Weak constraints Cw (lower penalty terms) - constraints derived from
the rules that do not have to be satisfied in the created harmonization,
but their non-fulfillment lowers the harmonization assessment.

3. Added value Va (reward terms) - the rules that specify chord arrange-
ments or connections between chords that improve the sound of the
harmonization.

The fitness function ft for a given individual X has the following form:

ft(X) = Va + Cw + (C · t)Cs,

Cs =
ms∑
i=1

ϕi(X), Cw =
mw∑
j=1

χj(X), Va =
ma∑
k=1

ψk(X),
(2)

where ϕi(X) < 0 is the penalty for not fulfilling strong constraint i, i =
1, . . . ,ms, χj(X) < 0 is the penalty for not fulfilling weak constraint j, j =
1, . . . ,mw, ψk(X) > 0 is the reward associated with the rule k, k = 1, . . . ,ma,
t ≤ n is the generation number, C is a constant parameter.

9

5. Fitness function – the rules

The fitness function must be appropriately matched to the type of harmo-
nization being created. We apply the proposed algorithm for the two types of
harmonization (tonal and modal). Accordingly, two sets of rules derived from
music theory (respectively, tonal and modal) were created. Please consult
the publicly-available source code [19] for detailed implementation of both
fitness functions and their sub-functions.

5.1. Tonal harmonization
The set of considered rules for tonal harmonization includes those that

are taught at music schools in the first years of harmonization classes. All
of them come from a harmony textbook [20]. Similar rules can be found, for
instance, in [21, 22].

As demonstrated in section 6 the selected set of rules allows for achiev-
ing effective harmonizations, highly graded by the human expert in terms of
both formal and aesthetic aspects. In the created fitness function the values
of ms = 9, mw = 9 and ma = 4 are applied in Equation (2).

Strong constraints Strong constraints refer to harmonization acceptabil-
ity. If any of these constraints is not fulfilled then harmonization cannot be
considered correct. The following strong constraints are considered (selected
examples of their violation are presented in Figure 2).

i) Doubled prime in the first chord and the last chord – The first and the
last chord occurring in a harmonization are usually a tonic, so as to
emphasize the key in which the harmonization is created.

ii) Voices are not crossing – The voices in the chords must not cross, that
is, the highest note must be in the soprano, the lower one in the alto,
yet the lower one in the tenor, and the lowest one in the bass.

iii) Limited distances between voices – The distance between the three high-
est voices should not exceed an octave interval. The distance could be
up to two octaves between the two lowest voices.

iv) No quint in the bass on strong downbeat – Downbeats for the meter are
given. Chords on the first given downbeat cannot have quint in the bass.

10

v) Correct notes resolutions – Some rules are specified for note resolution
in chords: (a) a sixth must be resolved up by a second, (b) a seventh
must be resolved down by a second, (c) a ninth must be resolved down
by a second, (d) if the chord is dominant third must be resolved up by
the minor second.

vi) No parallel (or antiparallel) quints, octaves, or primes – If there is a
quint interval between two voices in a chord, there cannot be a quint
interval between the same voices in the following chord. An analogous
rule applies to octave and prime intervals.

vii) Voices must move in different directions – The voices, moving from one
chord to the next, should move in different directions. The movement
of all voices in one direction, up or down between consecutive chords is
forbidden.

viii) Penultimate chord the bass note – The penultimate chord in harmoniza-
tion is usually dominant or subdominant. It is important to emphasize
the sound of the chord by doubling the prime (if possible) and not using
a fifth in the bass.

ix) No augmented interval moves – There cannot be an augmented interval
between two consecutive notes in one voice.

Figure 2: Examples of strong constraints violation. From left to right: ii) Crossed the
alto and the tenor, iii) Distance between the soprano and the alto exceeds an octave, v)
Incorrect resolution of thirds, vi) Antiparallel quints between the soprano and the bass,
ix) Augmented jump in the bass.

Weak constraints Weak constraints do not have to be strictly satisfied,
i.e. violating them does not make a harmonization unacceptable. However,
violation of any such constraint lowers the harmonization evaluation. The
following strong constraints are considered (selected examples of their viola-
tion are presented in Figure 3).

11

i) Doubled quint in the bass – When the quint is doubled in a chord, one
of these quints should be in the bass.

ii) No quint in the bass on on-beats – On-beats are sorted by their impor-
tance. Quint in the bass on the on-beat is not preferable.

iii) No tripled prime in tonic function – It is permissible to triple prime in
the last chord, although, it is not preferable.

iv) No consecutive chords on quint – Chords that have a fifth in the bass
can occur, albeit, two such chords should not follow each other directly.

v) The bass movement – The lowest voice (the bass) is one of the most
significant voices in a harmonization, hence its movement is preferred in
chords connections.

vi) Movement of at least two voices – A movement of at least two voices
between the two following chords is preferred so that the harmonization
does not sound static.

vii) No seventh interval – There should not be a seventh interval between
two consecutive notes in one voice or between three consecutive notes in
total in one voice.

viii) Melodic line smoothness – The middle melodic lines, the alto and the
tenor, should be conducted smoothly.

ix) The bass movement restriction – For the bass voice, the maximum in-
terval it can take in two consecutive moves is a tenth.

Figure 3: Examples of weak constraints violation. From left to right: i) Doubled quint
but not in the bass, iii) A chord in tripled prime, iv) Two consecutive chords with quint
in the bass, v) No bass movement, vi) Only one voice moved.

Added value Certain features of a harmonization improve its quality, and
therefore, their occurrence positively contributes to the evaluation score.

12

i) Parallel sixths – If there is a sixth interval between two voices in a chord
and a sixth interval between the same voices in the following chord.

ii) Opposite movement of the soprano and the bass – The soprano and the
bass are the two most prominent voices in harmonization. For this rea-
son, the opposite movement of these voices is preferred.

iii) Opposite movement on a perfect interval – Perfect intervals are octaves
and quints. The opposite movement on such intervals is preferred.

iv) Chord position – Every chord can be in the closed or open position. The
preferred position is open.

5.2. Modal harmonization
The problem of harmonizing modal music can be considered more compli-

cated and advanced than harmonizing tonal music. Harmonization of modal
music is characterized by a different frequency of chords in relation to the
notes in the main melody. In tonal music samples, there is one chord per
note in the melody. In modal music, one chord can correspond to more than
one note (e.g. a sequence of notes). For this reason, condition (ii) defined
in Section 4.3 must be adjusted. The note from the input voice to which
the chord note (in the same voice) is matched is considered to be the first
note from the sequence, which is defined by the chord label corresponding to
this sequence. If any note from the sequence does not belong to the defined
chord, the chord is drawn without considering the note in the input voice,
but in the other voices each note must be unique (no doubling is allowed, cf.
Section 4.1).

Analogously to the rules selected for tonal music (Section 5.1), the rules
for modal music are also based on the modal harmony textbook [23]. Very
similar or identical rules can also be found in other books on modal har-
monization [11, 24]. It is worth mentioning that some rules used for modal
harmonization are similar (or identical) to those used for tonal harmoniza-
tion. These rules are not described again, but only their usage is indicated.

In the modal fitness function the values of ms = 6, mw = 9 and ma = 2
are applied in Equation (2).

Strong constraints The following strong constraints are considered.

i) No parallel (antiparallel) quints, octaves or primes – The exception is
the antiparallel intervals in the outer voices (melody and the bass).

13

ii) Voices are not crossing

iii) No augmented interval moves

iv) No consecutive quart or quint interval in the bass – If there is a quart
(quint) interval between two consecutive notes, there cannot be another
quart (quint) interval in the same direction between the following two
notes.

v) Correct doubled third – If a chord is in the first inversion and has doubled
third, the third can only be in the bass and the alto, or the bass and the
tenor. If a chord is major, the third must not be doubled.

vi) Correct the bass move in chord inversions – If a chord is in the first
inversion and the bass moves by quart interval, next the bass move must
be in the opposite direction. If a chord is in the second inversion the
bass must not move.

Weak constraints The following weak constraints are considered.

i) Doubled prime in the bass in the first chord and the last chord

ii) The bass movement restriction

iii) Antiparallel quint and octaves in outer voices – It is permissible for the
melody and the bass to move in antiparallel quints or octaves, however,
this is not preferable.

iv) Doubled quint in chord – When the quint is doubled in a chord, none of
them should be in the bass.

v) Melodic line smoothness– The middle melodic lines, the alto and the
tenor, should not include intervals bigger than quint between consecutive
notes (in the same voice).

vi) Limited distances between voices – The distance between the three high-
est voices should not exceed an octave interval.

vii) Chord inversion in the main cadence – In the main cadence all chords
should have prime in the bass.

14

viii) Chord position before the main cadence – Before the main cadence all
chords should be in inversions or should not have prime in melody.

ix) Movement on quint interval and octave interval – If there is a quint
(octave) interval between two voices and both voices move in the same
direction on this interval, the higher voice should move by a maximum
of a whole tone, lower one by at least third interval.

Examples of violation of selected strong and weak constraints are pre-
sented in Figure 4.

Figure 4: Examples of strong and weak constraints violation. From left to right: Strong
constraints: i) Parallel quints between the bass and the tenor, v) Third incorrect doubled
in a chord. Weak constraints: iv) Quint incorrect doubled in a chord, ix) Incorrect move
on an octave

Added value The following added value rules are considered.

i) Connections between chords – If two consecutive chords have a common
note, it is preferable for this note to remain in the same voice without
movement. If two consecutive chords do not have a common note, it is
preferable to move three voices in the direction opposite to the fourth.

ii) Chords in the first inversion – A chord without inversion is preferred
before and after a chord in the first inversion.

6. Experimental setup and results – tonal harmonization

The examples used to tune and test the algorithm for tonal harmoniza-
tion come from a harmony textbook [20]. Similar examples can be found in
other harmony textbooks, as well. 18 examples (melodic lines with harmonic
functions) were selected and divided into three groups:

Group 1: long examples (about 20 chords), using only basic functions, which
define only three pitches (7 examples),

15

Group 2: short examples (about 10 chords), using basic and side functions
and added pitches (4 examples),

Group 3: long examples (about 20 chords), using basic and side functions,
and added pitches (7 examples).

Out of these 18 examples, 3 (one from each group) were used for parameters
tuning and the remaining 15 were used in the final tests. All tests were run
on a PC with IntelCore i7-9750H (2.6GHz) processor and 24GB RAM.

6.1. Parameterization
The basic values of the algorithm’s parameters were selected in prelim-

inary tests and tuned afterward. For each parameter, several values were
tested (with the remaining parameters frozen at their basic values) on the 3
examples devoted to parameter tuning. Each test was run five times (with
different random seeds) and returned values were averaged.

The following selections / ranges of parameters were tested (the finally
selected values are bolded):

• sp — (population size) — [10, 100, 500, 1000, 1750, 2500, 3500, 5000];

• se — (elite size) — [0, 3, 5, 10];

• pc — (crossover probability) — [from 0 to 1 with step 0.1], 0.8;

• pm — (mutation coefficient) — [from 0 to l with step 1], 1 or 2;

• pm (additional fine-tuning) — [from 1 to 2 with step 0.1], 1.1;

• ps — (selection pressure) — [from 0.5 to 1 with step 0.1], 0.7;

• n — (number of generations) — [1000, 3000, 5000, 10000];

• ts — (tournament size) — [2, 4, 8, 10].

6.2. Number of required generations
The efficacy of the tonal version of the algorithm was checked on 15

samples that were harmonized. Table 1 shows the time (number of genera-
tions) required to find the first correct and the finally returned (best found)

16

solutions, respectively. In each run, the algorithm found the first correct har-
monization (satisfying all strong constraints) within the first 86 generations
(usually much faster).

The number of generations needed to find the correct solution varies be-
tween groups. Shorter problems, with fewer chords, were solved faster (cf.
group 1 vs group 2). Likewise easier problems, using less advanced functions,
turned out to be easier to solve (cf. group 1 vs group 3). Similar relationships
can be observed among the finally returned solutions.

Table 1: The number of generations required to find a solution.

Group no. Example no.
Generation number in which the result was found

first correct best found (returned)
Mean Min Max Mean Min Max

1

1 16.6 14 22 208.2 86 343
2 16.8 13 22 268.2 129 744
3 14.8 12 18 218.4 109 397
4 16.6 14 19 390 90 803
5 15.4 14 17 1414.5 145 3914
6 11.2 7 14 909.6 105 2477

2
7 8.2 6 10 177.6 27 593
8 3.2 1 5 24 13 36
9 6.8 5 8 826.2 75 3200

3

10 33.6 19 86 1933.6 96 3576
11 19.2 17 22 699.8 249 1224
12 21 18 25 3098.6 2179 3838
13 20.2 19 21 926.6 73 2507
14 19.6 17 25 890.8 130 3334
15 16.2 15 19 1411.6 198 2500

6.3. Running time
The running time of the algorithm is presented in Table 2, separately

for each group. For testing purposes, group 4 was generated artificially by
multiplying 10 times examples from groups 1 and 3 (making them 10 times
longer). It can be observed from the table that the running time does not
seem to depend on the complexity of the example (cf. Group 1 and Group
3), but only on its length. Furthermore, a rough comparison of the time
relationship between groups 1, 2 and 4 suggests its quasi-linear dependence
on the harmonization length.

17

Table 2: The average algorithm’s running time in seconds (harmonization time) for each
group.

Group 1 Group 2
Mean Min Max Mean Min Max
531.9 485.5 567.0 225.8 180.7 252.1

Group 3 Group 4
Mean Min Max Mean Min Max
536.2 508.7 582.4 5633.2 5126.5 6357.8

6.4. Human expert evaluation including aesthetic aspects
Every created harmonization has its score assigned as a result of the

fitness function evaluation. However, this score only indicates how well a
harmonization satisfies the formal fitness function requirements (the consid-
ered rules) and does not indicate directly how good is the harmonization
in strictly musical terms (how well does it sound). For this reason, all 15
generated samples were additionally evaluated by a human expert - a har-
mony teacher. The teacher’s method of evaluating the solutions was the
same as when evaluating students’ works. Harmonizations were evaluated
on a 5-point scale, from 1 (the lowest score) to 5 (the highest score).

On the one hand, the expert evaluated the theoretical correctness of the
constructed solutions, but on the other hand, based on many years of prac-
tical experience he/she was also able to evaluate aesthetic and creative ele-
ments. In other words, the expert’s evaluation was comprehensive and con-
cerned both major harmonization aspects: its construction and sound.

Out of all created harmonizations, eight were graded 5, six 4.5, and one
4. Two types of problems were identified by the expert in downgraded har-
monizations. The first one was the lack of adherence to certain theoretical
rules. The most common problem was reaching a fifth in the bass of a chord
other than by a movement of a second interval. However, none of the vi-
olated rules indicated by the experts was included in the fitness
function, which means that their fulfillment was not directly imposed, and
the algorithm could only meet them by chance. In contrast, the rules used in
the fitness function as strong constraints were strictly observed. This means
that extending the fitness function with additional rules should potentially
solve the problem highlighted by the expert.

The remaining expert’s remarks, formulated in a few cases, were related

18

(a) Long example, from the first group, graded 5.

(b) Short example, from the second group, graded 4.5.

(c) Long example, from the third group, graded 5.

Figure 5: Example harmonizations created by the algorithm.

to minor sound issues, mainly to chords combinations (most often D7 and
TVI). Requirements of this type are hard to be formally expressed in the fit-
ness function which makes their enforcement in the resulting harmonizations
difficult. However, also, in this case, an attempt could be made to formulate
a rule and add it to the Added Value module, which could help eliminate
this problem.

Figure 5 presents three examples of generated harmonizations rated 5, 4.5
and 5, respectively. The indicated place that could be harmonized differently
in example 5b are chords fifth and sixth (D7, TVI). The created solution is
not incorrect, although a better sound would be achieved by placing the
prime of D7 chord in the lowest voice.

To summarize, high grades given by the harmony teacher support the
claim that the vast majority of created harmonizations are not only the-

19

oretically but also sonically correct. Seven harmonizations contain minor
imperfections, some of which should be easily resolved by extending the fit-
ness function. It is also worth mentioning that according to the expert’s
opinion, the generated solutions do not expose any features of the
automatic origin and fully correspond to the products of human
harmonization.

6.5. Modeling the solution
The fitness function consists of 22 smaller functions, each of which ad-

dresses and evaluates one particular aspect of harmonization. Each of these
evaluations is multiplied by a respective weight (negative for a penalty and
positive for a reward). Modifying these weights allows for modeling the so-
lution by increasing/decreasing the relevance of a given aspect with respect
to the others.

As an example, Figures 6a and 6b present two harmonizations of the same
melodic line with different emphasis put on the reward for chords in the open
position. In the first case, the base fitness function (the one used throughout
the paper) was applied and in the second one, the respective coefficient was
3 times bigger, so as to reinforce the relevance of this feature. In both figures
chords in the open position are marked in green. Indeed, the number of
chords in the open position in Figure 6b is clearly greater than in Figure 6a.

The above example confirms the possibility of modeling harmonization,
so as to focus on specific aspects. However, it is important to note that too
strong reinforcement of specific features may result in others not being met,
despite the overall increase of the fitness value.

7. Experimental setup and results – modal harmonization

The harmonization of modal music is based on different rules than the
harmonization of tonal music. For this reason, a readjustment of the param-
eters of the algorithm is required. All examples used for parameterization
and testing were different from the examples used for tonal harmonization.
All of them were taken from [25]. A total of 11 examples have been gathered,
which were divided into 3 groups:

Group 1: short examples (about 10 chords) – 4 examples,

Group 2: medium examples (about 15 chords) – 3 examples,

20

(a) Harmonization created with a base fitness function.

(b) Harmonization created with an enhanced reward for the open position.

Figure 6: Modeling the solution. Chords in open positions are marked in green.

Group 3: long examples (about 20 chords) – 4 examples.

7.1. Parameterization
Parameterization of the algorithm was performed in exactly the same way

as for tonal harmonization (Section 6.1). Three examples, one per group,
were used for this paper. The remaining 8 was used exclusively in the test
phase. The following ranges of parameters were tested (the finally selected
values are bolded):

• sp — (population size) — [10, 100, 500, 1000, 1750, 2500, 3500, 5000];

• se — (elite size) — [0, 3, 5, 10];

• pc — (crossover probability) — [from 0 to 1 with step 0.1], 0.8;

• pm — (mutation coefficient) — [from 0 to l with step 1], 1 or 2;

• pm (fine-tuning) — [from 1 to 2 with step 0.1], 1;

• ps — (selection pressure) — [from 0.5 to 1 with step 0.1], 0.6;

• n — (number of generations) — [1000, 3000, 5000, 10000];

• ts — (tournament size) — [2, 4, 8, 10].

21

7.2. Number of required generations
The numbers of generations required to find the first correct and the

finally returned (best found) solutions, respectively are presented in Ta-
ble 3. In each run, the algorithm found a harmonization, which satisfies
all strong constraints, within the first 20 generations. The number of gener-
ations needed to find the correct solution (and the best one) varies between
groups. The longer the harmonization problem, the longer the time needed
to find the correct or best solution.

Table 3: The number of generations required to find a solution.

Group no. Example no.
Generation number in which the result was found

first correct best found (returned)
Mean Min Max Mean Min Max

1
1 5.2 3 9 341.2 27 1455
2 6.6 5 8 44.8 28 67
3 8.3 7 9 374.8 95 890

2 4 7 7 7 662.5 577 748
5 14.4 10 19 163.6 92 340

3
6 11.4 9 13 1376.2 197 2930
7 12.8 11 15 1781.4 233 4327
8 14.2 11 18 1496.4 152 4448

7.3. Running time
The running times of the modal version of the algorithm are summarized

in Table 4, separately for each group. Analogously to Section 6.3, group 4
was generated artificially by multiplying 10 times the examples from group 1
(examples created in this way were about 100 chords long). Since the groups
differed only in length (the complexity of examples did not vary between
groups) the running times suggest a quasi-linear dependence between the
calculation time and the example length.

7.4. Human expert evaluation – technical and aesthetic aspects
As with the results for tonal harmonization (Section 6.4), an expert evalu-

ation of generated modal harmonizations was performed. A harmony teacher
evaluated all 8 test on a 5-point scale (the same as for tonal harmonization).
Out of 8 harmonizations, one was graded 5, one – 4.5, three – 4, and three –

22

Table 4: The average algorithm’s running time in seconds (harmonization time). Group
4 was generated artificially by multiplying 10 times examples from group 1.

Group 1 Group 2
Mean Min Max Mean Min Max
244.1 197.0 298.8 354.9 329.8 403.1

Group 3 Group 4
Mean Min Max Mean Min Max
476.9 422.2 544.6 2612.4 2073.2 3103.1

3.5, with an average grade of 4. Figure 7 presents 3 examples graded 5, 3.5
and 4.5, respectively.

The expert pointed out two general problems present in most of the re-
sulting harmonizations. The first one concerned the leading of the tenor,
the fluidity of which should have been better. The second one was related
to the distance between the alto and the tenor, which usually should be
smaller (preferably not exceeding a sixth). However, similarly to the algo-
rithm version for tonal harmonization, none of the issues pointed out
by the expert, were explicitly addressed in the fitness function. In
both downgraded results presented in Figures 7b and 7c), respectively the
identified problem can be observed. In the lowest rated example (Figure 7b)
an additional concern is that the distance between the tenor and the bass is
often too large (preferably should not exceed an octave).

In summary, the assessments made by the expert support the statement
that the harmonizations are for the most part theoretically correct but some-
times suffer from some lacks in the sonic domain. The most important com-
plaint about sonic weaknesses was the lack of use of passing notes and chords
with added notes. Well-sounding, man-made harmonizations contain such
enhancements, making the sound of the whole harmonization better.

7.5. Enriching the harmonization through seventh chords
Following up on expert comments to enrich the sound of harmonization,

an attempt was made to expand the used chords. One way to do it is to use
more complex chords than the basic ones (consisting of more than 3 notes).
As an extension of the baseline algorithm, an attempt was made to use chords
with an added seventh. The addition of seventh chords to harmonization is
based on probability. Changing a basic chord to a seventh chord (and vice

23

(a) Short example, from the first group, graded 5.

(b) Medium example, from the second group, graded 3.5.

(c) Long example, from the third group, graded 4.5.

Figure 7: Example modal harmonizations created by the algorithm.

versa) is done by means of the mutation operator. If a given chord is mu-
tated, then with probability psc it can be converted to a seventh chord (if it
was a basic chord) or to a basic chord (if it was a seventh chord). The prob-
ability psc = 0.164 was calculated based on the modal music harmonizations
included in [25] and equaled the frequency of using seventh chords relative
to all chords in harmonizations. Utilization of such chords requires an ad-
ditional extension of the fitness function, since the use of seventh chords is

24

also bounded by certain rules. Accordingly, the fitness function was extended
with the following rules.

Strong constraints The following strong constraints were added.

vii) No seventh in the soprano or the bass – Added seventh must always be
in the alto or the tenor.

viii) Seventh chord preparation – The pitch of the added seventh note must
be used in the previous chord and in the same voice.

ix) No augmented quint in the seventh chord – If the seventh chord is to
be used, there must not be an augmented quint between any of its two
pitches.

x) Correct seventh resolution – Seventh must move down a second or not
move at all (only if the seventh chord is in the first inversion).

Weak constraints The following weak constraint was added.

x) No second inversion – If the seventh chord is used, it is preferable that
it is without or in the first inversion (prime or third in the bass).

Added value The following added value rule was added.

iii) Use of a seventh chord – Since the use of a seventh chord enriches the
harmonization, such chords are preferred.

The results generated by the algorithm with the extended fitness function
are presented in Figure 8. Chords with added seventh are marked in green.
Despite rules that severely restrict the use of chords with an added seventh,
the algorithm has found positions where it is possible to use them in such
a way that none of the rules is broken. It is also possible to encourage the
algorithm to use more chords with an added seventh in the way described in
Section 6.5. However, it is important to keep in mind that this can result in
violating some weak constraints.

25

Figure 8: Enriching the harmonization. Chords with added seventh are marked in green.

8. Comparison of results

The results presented for both versions of the algorithm (modal and tonal)
can be compared by considering three aspects: efficiency, running time and
human expert evaluation.

In the case of efficiency, it can be seen that the algorithm very quickly
finds the first correct solutions (regardless of the version). The best (re-
turned) solutions were sometimes found much later (even after 4 000 genera-
tions), but both versions of the algorithm do not particularly differ regarding
this aspect.

The running time is also similar for both versions of the algorithm. For
the analogous length of examples, e.g. group 2 of the tonal version and group
1 of the modal version, the calculations took similar time. This suggests that
the running time is not strongly dependent on the number of rules in the
fitness function (22 for tonal and 16 for modal) nor on the used harmonic
functions/chord labels (complexity of the problem). Keeping the rules rela-
tively simple makes the running time mainly dependent on the length of the
harmonized example.

The last aspect is the evaluation by the human expert. In this case,
the algorithm performed quite well in both cases (a high rating for tonal
harmonization and a lower, but still good rating for modal harmonization).
It is worth noting that in no case did the algorithm break the defined rules,

26

and the observations made by the expert referred to the elements undefined
(or differently defined) in the fitness function.

9. Conclusions and future work

The problem of melodic line harmonization considered in the paper is
one of the stages of the music composition process and as such requires
creativity. The outcome (a created harmonization) is generally hard to assess
due to its subjective nature. With the above caution, this article points out
that it is possible to achieve human-level performance in this task (melody
harmonization) using evolutionary computation.

The proposed evolutionary algorithm creates harmonizations by means of
carefully designed evolutionary operators and the fitness function that reflects
music theory rules. The fitness function is composed of three general terms:
(1) the rules that must be fulfilled if harmonization is to be considered correct,
(2) additional rules that are expected to be fulfilled, otherwise the score of the
harmonization is lowered, (3) the rules whose fulfillment further improves the
resulting harmonization. Moreover, the modular design of the fitness function
makes it easily extendable with other music rules and allows to emphasize
various aspects in the resulting harmonization. Furthermore, the proposed
algorithm does not require any training, which makes it independent from
the styles/biases implicitly present in the training data.

The usefulness of the algorithm was demonstrated on two different types
of harmonization (tonal and modal). In the case of tonal harmonization, the
results generated by the algorithm are correct not only in terms of the music
theory but also sonically. According to the expert’s opinion, obtained solu-
tions do not exhibit any features of artificial origin and fully correspond to
the products of human harmonization. Additionally, the process of compu-
tationally generating harmonizations is relatively fast. In the case of modal
harmonization the results generated by the algorithm are worse than for
tonal harmonization, but still positively assessed. Moreover, an attempt has
been made to address the problems identified by an expert related to the
harmonization sound diversity.

Our future plans involve removing harmonic functions/chord labels added
to the notes and performing harmonization of the melodic line itself, so as
to enable the creation of choral adaptations in small ensembles or provide
harmonization assistance for less advanced musicians.

27

References

[1] J. Mycka, A. Żychowski, J. Mańdziuk, Human-level melodic line har-
monization, in: D. Groen, C. de Mulatier, M. Paszynski, V. V.
Krzhizhanovskaya, J. J. Dongarra, P. M. A. Sloot (Eds.), Computa-
tional Science – ICCS 2022, Springer International Publishing, Cham,
2022, pp. 17–30.

[2] G. A. Wiggins, Searching for computational creativity, New Generation
Computing 24 (3) (2006) 209–222.

[3] M. Kaliakatsos-Papakostas, A. Floros, M. N. Vrahatis, Artificial intelli-
gence methods for music generation: a review and future perspectives,
Nature-Inspired Computation and Swarm Intelligence (2020) 217–245.

[4] F. Carnovalini, A. Rodà, Computational creativity and music generation
systems: An introduction to the state of the art, Frontiers in Artificial
Intelligence 3 (2020) 14.

[5] O. Vechtomova, G. Sahu, D. Kumar, Lyricjam: A system for generating
lyrics for live instrumental music, in: Proceedings of the 11th Interna-
tional Conference on Computational Creativity, 2021, pp. 122–130.

[6] J. Mańdziuk, M. Goss, A. Woźniczko, Chopin or not? a memetic ap-
proach to music composition, in: 2013 IEEE Congress on Evolutionary
Computation, 2013, pp. 546–553.

[7] J. Mańdziuk, A. Woźniczko, M. Goss, A neuro-memetic system for mu-
sic composing, in: L. Iliadis, I. Maglogiannis, H. Papadopoulos (Eds.),
Artificial Intelligence Applications and Innovations, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2014, pp. 130–139.

[8] F. Pachet, P. Roy, Musical harmonization with constraints: A survey,
Constraints 6 (1) (2001) 7–19.

[9] E. Agmon, The Languages of Western Tonality, Springer, 2013.

[10] R. L. Crocker, A History of Musical Style, Dover Publications, Inc., NY,
2018.

[11] H. Potiron, Treatise on the Accompaniment of Gregorian Chant, Society
of St. John the Evangelist, Desclée, 1933.

28

[12] H. Hild, J. Feulner, W. Menzel, Harmonet: A neural net for harmonizing
chorales in the style of J.S.Bach, NIPS’91: Proceedings of the 4th Inter-
national Conference on Neural Information Processing Systems (1991)
267––274.

[13] A. Moray, C. K. I. Williams, Harmonising chorales by probabilistic in-
ference., Advances in Neural Information Processing Systems 17 (2005)
25–32.

[14] L. Yi, J. Goldsmith, Automatic generation of four-part harmony., Pro-
ceedings of the Fifth UAI Bayesian Modeling Applications Workshop
(2007).

[15] B. Evans, S. Fukayama, M. Goto, N. Munekata, T. Ono, Autochor-
uscreator : Four-part chorus generator with musical feature control,
using search spaces constructed from rules of music theory, Proceedings
ICMC (2014).

[16] A. Freitas, F. Guimaraes, Melody harmonization in evolutionary music
using multiobjective genetic algorithms., Proceedings of the Sound and
Music Computing Conference. (2011).

[17] R. D. Prisco, G. Zaccagnino, R. Zaccagnino, Evocomposer: an evolu-
tionary algorithm for 4-voice music compositions., Evolutionary compu-
tation 28 (3) (2020) 489–530.

[18] O. Olseng, B. Gambäck, Co-evolving melodies and harmonization in
evolutionary music composition., International Conference on Compu-
tational Intelligence in Music, Sound, Art and Design. (2018).

[19] J. Mycka, Melodic line harmonization - source code (2022).
URL https://github.com/MelodicLineHarmonization/
melodicLineHarmonization.git

[20] K. Sikorski, Harmonia cz. 1, PWM, 2020.

[21] H. Benham, A Student’s Guide to Harmony and Counterpoint, Rhine-
gold Publishing Limited, 2006.

[22] N. Rimsky-Korsakov, Practical Manual of Harmony, C. Fischer, 2005.

29

https://github.com/MelodicLineHarmonization/melodicLineHarmonization.git
https://github.com/MelodicLineHarmonization/melodicLineHarmonization.git
https://github.com/MelodicLineHarmonization/melodicLineHarmonization.git

[23] W. Lewkowicz, Harmonia gregoriańska, Księgarnia św. Wojciecha, 1958.

[24] E. Lapierre, Gregorian Chant Accompaniment: A New And Simple Ap-
proach According To The Theory Of The Basic Modal Intervals, Literary
Licensing, LLC, 2011.

[25] H. Potiron, Accompagnement du Kyriale Vatican par Le R.P. Dom Jean
Hébert Desrocquettes: Société Saint Jean l’Évangéliste, Desclée et Cie,
1929.

30

Jan Mycka received his B.Sc. and M.Sc. degrees in Computer
Science from the Faculty of Mathematics and Information Sci-
ence of the Warsaw University of Technology (WUT), in 2020
and 2021. Currently Ph.D. student at WUT Doctoral School.
His research interests include the application of artificial intelli-
gence methods in music-related problems.

Adam Żychowski received his B.Sc. and M.Sc. degrees in
Computer Science from the Faculty of Mathematics and In-
formation Science, Warsaw University of Techonology, Warsaw,
Poland in 2014 and 2015, respectively. He is currently pursuing
PhD in Computer Science. His research interests include Game
Theory and Computational Intelligence methods especially ar-
tificial neural networks and evolutionary algorithms.

Jacek Mańdziuk, Ph.D., D.Sc., IEEE Senior Member, received
M.Sc. (Honors) and Ph.D. from the Warsaw University of Tech-
nology (WUT), Poland in 1989 and 1993, resp., and D.Sc. de-
gree in Computer Science from the Polish Academy of Sciences
in 2000. In 2011 he was awarded the title of Professor Titular.
He is full professor at the Faculty of Mathematics and Informa-
tion Science, WUT, Head of Division of Artificial Intelligence
and Computational Methods, and Head of Doctoral Program in

Computer Science at this faculty.
Prof. Mańdziuk was a recipient of the Fulbright Senior Research Award (UC

Berkeley and ICSI Berkeley, USA) and the Robert Schuman Foundation Fellowship
(CNRS, Besançon, France). He was a visiting professor at Nanyang Technological
University (Singapore), University of New South Wales (Australia), Yonsei Uni-
versity (Korea) and University of Alberta (Canada).

His research interests include application of Computational Intelligence and Ar-
tificial Intelligence methods to games, dynamic and bilevel optimization problems,
and human-machine cooperation in problem solving. He is also interested in the
development of general-purpose human-like learning and problem-solving methods.
He is the author of 3 books and 170+ research papers. For more information please
visit http://www.mini.pw.edu.pl/∼mandziuk

31

	Introduction
	Contribution
	Extension of the ICCS 2022 conference publication

	Problem definition
	Related literature
	Proposed method
	Problem search space - admissible chords
	Stopping condition
	Population generation process
	Selection method
	Mutation and crossover
	Fitness function – a generic construction

	Fitness function – the rules
	Tonal harmonization
	Modal harmonization

	Experimental setup and results – tonal harmonization
	Parameterization
	Number of required generations
	Running time
	Human expert evaluation including aesthetic aspects
	Modeling the solution

	Experimental setup and results – modal harmonization
	Parameterization
	Number of required generations
	Running time
	Human expert evaluation – technical and aesthetic aspects
	Enriching the harmonization through seventh chords

	Comparison of results
	Conclusions and future work

