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Abstract—A new neural network method for Dimensionality
Reduction (DR) of the input feature space in Multilabel Classifi-
cation (MC) problems is proposed and experimentally evaluated
in this paper. The method (abbreviated as TCART-MR) can
be used in two possible scenarios: either as a stand-alone DR
pre-processing phase, preceding subsequent application of any
particular MC algorithm, or as a compact MC approach in which
TCART-MR is applied twice - first to DR task and then to MC
problem with reduced input space.

Extensive experimental results proved statistically relevant
advantage of TCART-MR over three state-of-the-art approaches
in DR domain (in the context of MC), as well as its superiority
over 10 state-of-the-art MC algorithms listed in a recent MC
survey paper. The MC tests were performed on a set of 9
benchmark problems and 16 evaluation measures (leading to
144 experimental cases in total).

I. INTRODUCTION

This paper considers a neural network model applicable
to two research tasks: Multilabel Classification (MC) and
Dimensionality Reduction (DR) of high-dimensional MC data.
These two problems can be regarded either as one integrated
research objective or treated in separation. Consequently,
proposed Multilayer Perceptron (MLP) based method can be
either applied to MC with or without initial DR phase (in
the former case leading to superior results), or utilized for
dimensionality reduction of MC data only, and subsequently
followed by any other MC approach.

A. Multilabel classification

MC can be regarded as a natural extension of a standard
(binary or multiclass) classification task. The main difference
between traditional and MC classifiers lies in the size of the
expected output of trained models. Instead of assigning one
label (one class) to an object, in MC the goal is to assign
a subset of all available labels. Formally, the problem of
Multilabel Classification is defined as follows. Let us denote
by X = {x1, . . . , xN}, X ⊆ Rn an instance space and by
Y = {y1, y2, . . . , yQ} a finite set of Q predefined labels. The
MC task consists in learning a function h : X → 2Y , which
assigns a subset of corresponding labels to each object from
X .
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MC is commonly encountered in a wide range of real-
life domains, including multimedia files categorization (e.g.
music [1], video [2] or images [3]), text classification (e.g.
automatic tagging of documents [4], articles [5] or e-mails [6]),
or bioinformatics (e.g. finding probable diseases based on
observed clinical symptoms [7] or discovering genomic func-
tions [8]).

While the assignment of an ensemble of labels to each
instance makes MC truly distinct from a standard, one label
per instance, classification problem, at the same time both for-
mulations have quite significant degree of commonality. One
of the shared properties, which has a significant impact on the
classification quality (accuracy) in both types of classification
tasks is the curse of dimensionality. This property is related to
the intrinsic inability of existing classification methods to deal
with high-dimensional representation of the data, and is a well
known impediment in building large, scalable classification
system.

B. Dimensionality reduction

DR is a process of converting high-dimensional data into
data of lower dimensionality while ensuring that the most
pertinent information conveyed by this data is preserved. Gen-
erally speaking, there are two main approaches to DR: feature
selection and feature extraction. Feature selection methods
focus on finding a subset of original variables in order to
remove irrelevant or redundant features. Feature extraction
methods transform original data into smaller feature space
usually with some information loss. Due to high practical rele-
vance in domains of classification and regression, a wide range
of DR methods were presented in the Machine Learning (ML)
literature. The most popular ones are Principal Component
Analysis (PCA) [9], Linear Discriminant Analysis (LDA) [10],
Canonical Correlation Analysis (CCA) [11] or Non-negative
Matrix Factorization (NMF) [12].

Majority of DR approaches, however, are not directly ap-
plicable to MC, due to their underlying assumption about
having one output variable (one target class) per instance,
while MC deals with subsets of output labels. Consequently,
a bunch of other methods well suited to MC specificity was
proposed. Some of them appropriately modify the baseline
DR algorithms, for instance, Multilabel Linear Discriminant
Analysis (MLDA) [13] is an MC extension of the LDA ap-



proach, or Conditional Principal Label Space Transformation
(CPLST) [14] which adapts the CCA method for an MC
setting. Other approaches are tailored specifically for an MC
setup, e.g. the Multilabel Least Square (MLLS) [15] method
which proposes a general framework for extraction of shared
structures in MC. In [16], the Multilabel Dimensionality
Reduction via Dependence Maximization (MDDM) algorithm
is described which projects the original data onto a lower-
dimensional feature space by maximizing the dependence
between the original feature description and associated class
labels, based on the Hilbert-Schmidt Independence Criterion.
Multilabel Informed Latent Semantic Indexing (MLSI) pro-
posed in [17] is an extension of a popular unsupervised Latent
Semantic Indexing (LSI) [18] method by means of capturing
correlations between multiple outputs (label sets). Also PCA
can be directly applied to MC [19], as it does not assume any
particular structure of the output values.

C. The main contribution

In this paper we address the problem of high dimensionality
of MC data by extending our MLP based algorithm - Tuned
CARTesian-based Error Function for Multilabel Classifica-
tion (TCART-M) [20] - by means of its integration with an
autonomous DR procedure that relies on weight examination
of the trained TCART-M classifier. Extension of the TCART-
M model by adding feature space dimensionality reduction
phase leads to essentially new MC method and opens new
research and application avenues of the model presented
in [20]. This extended version of TCART-M will be call
TCART-MR (TCART-M with DR phase) in the paper. It is
worth underlining that, besides being an effective MC method
itself, the TCART-MR algorithm can also be combined with
any MC algorithm and serve as the initial step (reduction
of input dimensionality) before the final MC takes place. In
this respect, the applicability of TCART-MR extends beyond
making an effective MC as the proposed method can also be
applied directly for the purpose of DR (treated as a separate,
stand-alone task) regardless of any particular MC method
being subsequently applied. Both these aspects of TCART-
MR application (MC and DR) are discussed and examined in
detail in this paper.

In summary, the main contribution of this work is threefold:
• An improvement of the TCART-M approach to MC,

initially proposed in [20], by adding an input dimen-
sionality reduction phase. This extension of TCART-M is
experimentally shown to significantly increase the quality
of resulting classification and leads to an essentially
novel, robust MC method (TCART-MR).

• An evaluation of a baseline TCART-M method and its
newly-proposed extension (TCART-MR) in the task of
MC based of their thorough comparison with 10 state-
of-the-art approaches to MC, based on 9 benchmark
problems and 16 error measures.

• An experimental verification of DR efficacy of TCART-
MR by means of its direct comparison with 3 state-of-
the-art DR methods widely utilized in MC domain.

The remainder of this paper is arranged as follows. Sec-
tion II presents an overview of the state-of-the-art comparative
approaches to MC, which are used for the experimental evalua-
tion of the proposed method. Section III provides a description
of the base TCART-M algorithm and introduces its extension
TCART-MR that enhances TCART-M by autonomous input
dimensionality reduction procedure. The next section presents
the experimental setup: method parametrization, benchmark
sets and evaluation measures, followed by a presentation of
experimental results in Section V. The paper is concluded in
the last section.

II. STATE-OF-THE-ART APPROACHES TO THE MC TASK

A wide range of practical applications stimulated and in-
spired research development in the field of MC, most notably
in the last 15 years. In effect, a multitude of approaches to MC
have been developed and published in the literature. Despite
the variety of underlying ideas, all of them can roughly be
divided into 3 categories: problem transformation methods,
algorithm adaptation methods and ensemble methods.

In the rest of this section 9 methods (each of them belonging
to one of these three classes) which are recognized as state-
of-the-art algorithms by well-established multilabel survey
paper [21], and are used as reference points for the TCART-M
and TCART-MR assessment in the experimental section, are
briefly characterized.

Problem transformation methods refer to algorithms which
transform the problem of MC into other well-established
learning scenario. For instance, Binary relevance (BR) [3]
which is one of the most popular and, at the same time, one of
the simplest algorithms relies on decomposing the multilabel
learning problem into Q independent binary classification
tasks. Each of these binary classification problems corresponds
to one label in the label space (one vs. all classification). This
transformed classification setting is subsequently approached
with any binary classification method. Another example of
a problem transformation method is the Classifier chaining
algorithm (CC) [22]. Similarly to BR, it also uses binary
classifiers, but not in the form of an ensemble but aligned in a
sequence (chain of classifiers). Another popular method of this
type is Calibrated label ranking (CLR) [23] which transforms
the multilabel learning problem into a label ranking task, in
which ranking the labels associated to a given sample is per-
formed by means of a sequence of pairwise comparisons [24].

The second category of MC algorithms, algorithm adap-
tation methods, contains approaches which adapt one of the
popular machine learning techniques (decision trees, k nearest
neighbors, neural networks, etc.) to make it suitable for dealing
with the MC task formulation. In particular, in Multilabel k-
nearest neighbors (ML-kNN) [25], for each test instance, its
k nearest neighbors among the training samples (with known
label sets) are first identified. Next, based on these label sets,
the maximum a posteriori (MAP) estimation is calculated
and used to determine the set of labels for the considered
sample. Another example is the Backpropagation for Mul-
tilabel Learning (BP-MLL) approach [26] which employs a



one-hidden-layer MLP architecture with the input and output
layers corresponding to the dimensionality of the data and the
size of the set of possible labels (Q), respectively. BP-MLL
is trained with the backpropagation algorithm with suitably
defined error function. This method was an inspiration for our
baseline TCART-M approach and is discussed in more detail
in Section III.

The last group, ensemble methods, consists of algorithms
which tackle the MC problem by independently running
multiple instances of classifiers (e.g. some of those mentioned
above) and combining their results by means of a voting
scheme. Generally speaking, the approaches belonging to this
category are the most powerful, but at the same time, the
most time-consuming and difficult to parameterize MC meth-
ods [21]. A prominent example of this class is the Ensembles
of Classifier Chains (ECC) [22] method which uses multiple
instances of the CC algorithm, described above. Another en-
semble method, RAndom k-labELsets (RAkEL) [27], randomly
creates subsets of k labels and train separately a label power-
set classifier for each of them. The final assignment of labels
for a given test instance is defined independently for each
label by a voting procedure involving all classifiers containing
this label. Yet another algorithm from this group, Hierarchy
Of Multilabel classifiERs (HOMER) [28], which is designated
for large multilabel data sets, groups similar labels into subsets
by means of a balanced clustering algorithm similar to k-
Means, and then applies another instance of an MC algorithm
to solve each of these smaller problems. The fourth method
from this group considered in our experiments is Random
Forest of Predictive Clustering Trees (RF-PCT) [21] which
uses Predictive Clustering Trees [29] as a baseline classifier
for randomly sampled training subsets.

Several deep learning neural network methods were also
proposed, however, their applicability is usually limited to
a certain domain or class of problems, e.g. text classifica-
tion [30], [31], X-Ray images classification [32], health risk
prediction [33], or images annotation [34].

III. TCART-M AND TCART-MR METHODS

TCART-M method is implemented as a one-hidden-layer
(1hl) MLP with a suitably designed error function and the
output layer of size Q (the number of possible labels). The
base formulation of the method (denoted by CART-M) was
inspired by the Backpropagation for Multilabel Learning (BP-
MLL) model [26]. In particular, both BP-MLL and CART-M
networks use the 1hl MLP architecture and are trained with
backpropagation algorithm. The error function of BP-MLL is
of the following form:

EBP−MLL =

m∑
p=1

∑
(r,s)∈Yp×Y p

e−(c
p
r−c

p
s)

|Yp||Yp|
(1)

where m denotes the number of training instances, cpq is a
network’s output of the neuron associated with the q-th label
in response to the p-th training sample (xp), Yp ⊆ Y is a set
of labels assigned to that p-th sample, and Yp = Y \ Yp. For

a given input sample xp, minimization of EBP−MLL leads
to higher output values of neurons associated with labels that
belong to Yp (correct ones) than with those which does not
belong to the p-th label set (incorrect ones). The chosen form
of the error function (1) is closely related to the ranking loss
criterion.

Once the training is completed, the set of labels h(x) ⊆ Y
assigned to a given test instance x is defined as follows [26]:

h(x) = {q ∈ Y : cq(x) > t(x)} (2)

where cq(x) denotes the q-th output in response to input x
and t(x) is a threshold associated with x. For each possible
threshold value, its potential application result (the number
of correctly assigned labels) is computed. Afterwards, the
threshold with the best result is selected. Please note that
a set of threshold values which lead to different results is
finite (e.g. {0, c1(x), . . . , cQ(x)}) and only these candidate
thresholds need to be checked.

The above formulation of the error function was enhanced
in [35] in the three following ways. Firstly, integration of
the threshold value into the error function (and the training
process) was proposed. Secondly, an independent threshold
for each label was considered, so as to make the system more
flexible and consequently more effective. Finally, comparisons
within any pair of output values representing classes belonging
to Yp × Y p, and their respective threshold values were taken
into account. In effect, the error function introduced in [35]
for the CARTesian-based Error Function for Multilabel Clas-
sification (CART-M) model was of the following form:

ECART−M =

m∑
p=1

( ∑
(r,s)∈Yp×Y p

(e−(c
p
2r−c

p
2s) + e−(c

p
2s+1−c

p
2r+1))

2|Yp||Y p|+ |Yp|2 + |Y p|2

+

∑
r∈Yp

∑
t∈Yp

e−(c
p
2r−c

p
2t+1) +

∑
s∈Y p

∑
t∈Y p

e−(c
p
2t+1−c

p
2s)

2|Yp||Y p|+ |Yp|2 + |Y p|2

)
(3)

In (3) each label i is represented by two output neurons (with
indexes 2i and 2i+1). The first of them represents the “degree
of assignment” of the ith label to a given input, and the
other is a threshold associated with this label. The assignment
of the set of labels to a given test input x has changed
accordingly from (2) to h(x) = {q ∈ Y : c2q(x) > c2q+1(x)}.
Furthermore, as opposed to (1), all possible pairs of labels are
considered in (3).

The above formulation was revisited and further tuned
in [20], leading to the Tuned CART-M method (TCART-M),
by introduction of a scaling parameter D which maintains
a balance between the core error formulation (1) and the



components added in (3):

ETCART−M =

m∑
p=1

( ∑
(r,s)∈Yp×Y p
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p
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p
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−(c
p
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−c
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)

D )
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+

∑
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e
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t∈Y p

e
−(c

p
2t+1

−c
p
2s)

D

2|Yp||Y p|+ |Yp|2 + |Y p|2

)
(4)

Parameter D is autonomously fine-tuned by the system for
a given data set in the nested cross-validation process. Two
versions of the tuning method are presented in [20]: TCART-
Mg in which D is optimized independently of the choice of
an evaluation measure, and TCART-Mi which optimizes D
for a particular error measure. Due to higher generality and
practical relevance of the former approach, in the rest of this
paper the TCART-Mg version is considered and referred to as
TCART-M.

A. TCART-M in dimensionality reduction (TCART-MR)

The main goal of this paper is extension of the TCART-
M method to DR task. Application of TCART-M to DR is
considered in the two following contexts:
• as an auxiliary preprocessing phase of the TCART-MR

usage in MC, or
• as a goal per se leading to higher compactness of data

representation. In this case, the DR phase of TCART-MR
can be subsequently followed by application of any MC
method.

In the proposed method the importance of particular input
features in the trained MLP network is estimated in a straight-
forward way based on inspection of the weights coming out
from the respective input neurons. More precisely, for each
input i = 1, . . . , n we define its utility value ui in the following
way: ui =

∑m
j=1 |w1

ij |, where m is the size of the hidden layer
and w1

ij is connection weight between the ith input neuron and
the jth 1hl unit. The utility value is used for selection of the
most pertinent features from the input data. The greater the ui
value, the more relevant the ith input is assumed to be.

Once utility values for all inputs are calculated the last
decision is the choice of the target input dimensionality ρ < n.
To this end we adopt the golden-section search algorithm [36]
which recursively narrows the range of values inside which
the extremum is known to exist. The usage of the method is
further discussed in Section V-A. It is proven that the number
of iterations required to find the optimum of unimodal function
on [a, b] interval with ε accuracy using the golden-section
search is equal to

⌈
logk

ε
b−a

⌉
, k ≈ 0.618. In our case ε = 1

and the size of the interval being searched is equal to n (the
size of the input), what leads to

⌈
logk

1
n

⌉
. In order to get the

above mentioned function value, in each iteration TCART-M
method has to be run. Thus, the number of TCART-M calls
is logarithmic. Please observe, that if the assumption about
unimodality does not hold, the algorithm still finds a local

optimum, which should anyway lead to improvement of results
compared to the case without dimensionality reduction.

The above procedure of detection of the subset of potentially
most relevant inputs (together with automatic calculation of
the size of this subset of input features) is applied to the
trained TCART-M network and once this subset is selected the
TCART-M training method is applied again on the input data
with reduced dimensionality. This nested application of the
TCART-M training method constitutes a new MC approach,
referred to as TCART-MR in the experimental evaluation
sections.

B. TCART-M and TCART-MR in multilabel classification

In [20], TCART-M method was compared with 12 most
popular MC approaches based on 5 widely-used benchmark
problems and an ensemble of 16 error measures. The exper-
imental setup and detailed results can be retrieved from the
source paper. On a general note, in a cumulative assessment
comparison received by summing up ranking positions of each
MC method over all benchmark sets and all error measures,
TCART-M appeared to be the best approach, followed by
CLR [23] and BR [3].

IV. EXPERIMENTAL SETUP

A. Benchmark problems

Nine popular MC benchmark problems, summarized in
Table I, were selected for experimental evaluation of the
TCART-MR method versus state-of-the-art MC approaches.
The data sets come from various domains and differ in the
number of labels, training samples, attributes, as well as the
average number of labels per class.

Name Domain N n Q Avg. Card. Ref.
emotions audio 593 72 6 1.87 [1]
yeast biology 2417 103 14 4.24 [8]
scene images 2407 294 6 1.07 [3]
enron text 1702 1001 53 3.38 [6]
medical text 978 1449 45 1.25 [7]
flags images 194 19 7 3.392 [37]
birds audio 645 260 19 1.014 [38]
genbase biology 662 1186 27 1.252 [39]
CAL500 text 502 68 174 26.044 [40]

TABLE I: Basic parameters of the benchmark data sets: name,
domain of origin, number of instances, number of attributes,
number of labels, and the average number of labels per class.

B. Evaluation measures

In traditional binary or multiclass classification there are
certain well-established metrics, e.g. accuracy or loss, which
are commonly applied to evaluate classification quality. Due to
higher practical complexity of MC, stemming from the neces-
sity of assignment of variable number of labels to particular
data instances, both the number and variety of MC-related
baseline metrics are higher.

In order to make the evaluation process fair and compre-
hensive, we followed the approach proposed in the recent MC
survey [21] in which 16 variable error measures were applied
allowing for examination of the tested methods from various



perspectives. These metrics are grouped into three categories
and the results are reported on the three levels of detail: in the
form of one cumulative score, which combines results of all 16
error measures, as three group-based indicators (one per each
group of error measures), and on a detailed level - separately
for each metrics. An in-depth description of all 16 metrics can
be found in [21]. Values of all measures except the coverage
fit the interval [0, 1]. For Hamming loss, one-error, coverage
and ranking loss, the smaller the value, the better the assessed
method’s quality. In the remaining cases the greater the value,
the higher the estimated performance.

V. EXPERIMENTAL EVALUATION

A. Experimental results in dimensionality reduction

In order to evaluate DR efficacy of TCART-MR, it was
compared with three state-of-the-art DR methods: PCA -
which is the most popular, general purpose DR approach,
MLSI [17] and MDDM [16] - which are, in turn, the most
popular DR algorithms among those designed specifically for
the MC domain. MLSI is a supervised extension of LSI which
retains statistical information not only about the input features
but also about the multivariate outputs. A mapping of the input
features onto a new feature space with lower dimensionality
is derived by solving a linear optimization problem.

MDDM finds a lower-dimensional input space by maxi-
mizing a dependence (averaged over all examples) between
feature space and associated labels. Finding a reduced space
is performed by solving eigen-decomposition problem.

In the case of PCA, after input space transformation, princi-
pal components (PCs) with the lowest variance were removed
and all the remaining ones served as the new input data for the
TCART-M algorithm. In order to make the comparison fair, the
number of selected PCs was chosen in a greedy manner, i.e. the
number of them that led to the best results were selected. The
same exhaustive strategy was applied to MLSI and MDDM,
i.e. the input dimensionality that led to the best outcome was
selected for comparison with TCART-MR. MLSI parameters
were set according to [17]: β = 0.5, γ = 0. MDDM was
implemented with uncorrelated projection constraint denoted
by MDDMp in [16].

Recall that the method of dimensionality reduction of the
MC data relies on the utility values ui, i = 1, . . . , n assigned
to MC input features and calculated based on the respective
weight values of the neural network trained with TCART-M
algorithm (see Section III-A). The reduced input representation
is composed of the features corresponding to the top ρ utility
values. The process of finding the optimal number of input
features for a given benchmark is automatized in this paper
(TCART-MR approach) by adopting the golden-section search
algorithm, as mentioned in Section III-A. Figure 1 presents a
relation between a degree of DR and the TCART-M perfor-
mance, for 4 example benchmarks. The optimal number of
reduced features clearly depends on a particular data set, but
to a much lesser extent on a particular error measure.

Optimal numbers of removed input features for all 9
benchmarks and all four tested methods are presented in

Table II. The values range from 21%, for flags data set, up to
97%, for medical data set, whose samples contain over 1400
features, representing the numbers of all word occurrences
in the patient’s symptoms description (including single digits,
punctuation marks, etc.). It stems from Table II that there is no

TCART-MR PCA MLSI MDDM
emotions 25 (35%) 36 (50%) 34 (47%) 31 (43%)
yeast 41 (40%) 67 (65%) 50 (48%) 45 (44%)
scene 147 (50%) 250 (85%) 199 (68%) 153 (52%)
enron 650 (65%) 720 (72%) 705 (70%) 620 (62%)
medical 1376 (95%) 1405 (97%) 1357 (94%) 1333 (92%)
flags 4 (21%) 5 (28%) 4 (21%) 5 (28%)
birds 143 (55%) 166 (64%) 145 (56%) 161 (62%)
genbase 498 (42%) 534 (45%) 489 (41%) 522 (44%)
CAL500 30 (44%) 35 (52%) 34 (50%) 32 (47%)

TABLE II: Optimal numbers of removed input features in
TCART-MR method and in other DR algorithms used in the
input preprocessing phase before a TCART-M classification.

straightforward relation between data set properties (numbers
of attributes or labels, average label cardinality, or domain
of the data) and the optimal number of removed features.
Estimation of the optimal number of features depends on
nonlinear inter-dependencies among features reflecting the
nature (inner structure) of the data and its domain of origin.

In Table III a cumulative DR score across all benchmarks is
calculated as a sum of ranking positions of a given method for
all 16 evaluation measures. TCART-MR turned out to be the
best method for 7 benchmarks, and in 3 of them (emotions,
scene and enron) gained the 1st position for each evaluation
measure. Based on 1-tailed t-test with significance level equal
to 0.05 for 5 data sets (emotions, scene, enron, medical and
flags), out of these 7, the results are statistically significant.
Normal distribution of results (which is the requirement for
using t-test prerequisite) was checked by Shapiro-Wilk test.

The advantage of TCART-MR over PCA stems from taking
into account the input-output relation between data samples
and label-sets during the training process, as opposed to PCA,
which is an unsupervised method independent of the output
labels. The superiority of TCART-MR over the two other
DR methods is attributed to its underlying non-linear nature,
contrary to MLSI which relies on linear correlations only.
Furthermore, the ability of TCART-MR to learn the input-
output relation directly from data samples seems to be a
decisive factor in its overall superiority. Finally, both TCART-
MR training phases (the initial DR phase and the final MC
one) are performed with the same neural architecture (differing
by the input size only) what makes the whole process more
coherent than in the competitive cases, where DR and MC
phases are performed using different methods.

B. Experimental results in multilabel classification

This section extends our previous experiments presented
in [20] by making comparison of the proposed TCART-MR
method with 11 MC approaches - three neural network based
(BP-MLL, CART-M, TCART-M) described in Section III and
eight other, state-of-the-art methods presented in [21], briefly
introduced in Section II, whose implementations were obtained



(a) Emotions (b) Scene (c) Enron (d) Medical

Fig. 1: Relationship between TCART-M quality (for each of 16 error measures) and the fraction of removed input features for
4 selected benchmarks. All evaluation measures are normalized to [0,1] interval.

TCART-M TCART-MR PCA MLSI MDDM
emotions 46 16 80 54 41
yeast 63 47 43 48 34
scene 72 16 64 45 40
enron 77 16 61 43 38
medical 80 20 57 44 39
flags 64 22 58 48 46
birds 68 23 54 50 45
genbase 78 34 48 50 30
CAL500 80 36 50 36 38
sum 628 230 515 418 351

TABLE III: Comparison of DR methods by summing their
ranking positions for all evaluation measures. The value of
each score is between 16 (always the 1st place) and 80 (always
the last one). For each benchmark, the best method is bolded.
Gray background denotes statistical significance of the result

difference between TCART-MR and a given method according
to 1-tailed t-test with significance level equal to 0.05.

from Mulan library [41]. The results are presented in an
aggregated way: for each benchmark set (in the form of
cumulative scores with respect to all error measures), and for
each error metric (as cumulative scores with respect to all
benchmark sets). For detailed outcomes please visit [42].

Table IV, for each tested method and each benchmark set,
presents sums of ranking positions across all 16 evaluation
measures. For each benchmark and each error measure, the
respective ranking was created based on the average values
of the considered error measure from 30 independent runs.
Afterwards these 16 ranking positions were summed up to
yield a cumulative score. In this comparison, in case of 3 out of
9 benchmarks TCART-MR gained the first place and its overall
score across all 9 benchmarks is the lowest (the best one) with
more than 100 points ahead of the runner-up method (CLR).
TCART-MR is also clearly the most effective among neural
network MC approaches (the first 4 leftmost methods). The
baseline version TCART-M, gained the 5th overall position.

The same experimental data is presented in Table V, though
from a different perspective. Each position in the table presents
the sum of ranking positions across all 9 benchmark sets, for
the respective method and evaluation metric. Since the table
refers to the same data as Table IV, but structured differently,
for each method its overall cumulative score (the last row)
does not change, and obviously TCART-MR remains the

best-scoring approach. In individual inspection of particular
evaluation measures TCART-MR gained the 1st place in 3 out
of 16 error measures and was excelled in this comparison only
by the HOMER [28] approach with 5 winning positions.

One of the general conclusions from presented results is the
importance of thorough evaluation of MC approaches in terms
of diversity of benchmark data and error measures. Analysis
of results presented in both tables indicates a complementary
role of variable benchmark selection, on the one hand, and
a wide range of specific evaluation metrics, on the other
hand. As can be easily concluded from the tables none of
the algorithms is superior over the others in a wide range
of data sets or evaluation measures. These observations are
confirmed by the Friedman non-parametric statistical test with
Nemenyi post-hoc analysis which proved that none of the
methods statistically significantly differ from all the others
(test confirmed the null hypothesis that methods performances
are similar with α = 0.05). On the other hand, despite the lack
of statistical superiority of any method over the others across
all benchmarks and all error measures, certain differences
between methods can clearly be observed and supported by
experimental evidence. For instance, in terms of benchmark
sets comparison (Table IV), TCART-MR was the only method
which won against the others in 3 cases, ECC [22] won twice,
and each of the remaining approaches at most once.

Strong dependence between the method’s performance and
the type of the error function is also a straightforward obser-
vation. In the class of example-based measures (top 6 rows)
the leading method is ECC with 223 points, for label-based
measures (next 6 rows) it is TCART-MR with the score of 270,
and for ranking-based measures (last 4 rows) the best approach
is CLR which scored 137 points. Overall, the winning method
- TCART-MR - seems to be the most universal or least prone
to selection of the error measure as it accomplished the 3rd,
1st and 2nd places, resp. in example-based, label-based and
ranking-based measures, with only minute score differences
compared to the leading methods.

While the above presented results and their analysis con-
firm that TCART-MR is the most universal approach among
the tested ones, it should be admitted that the method is
generally less efficient for the data sets with large numbers
of input attributes. In such cases we recommend to use
HOMER [28] approach, which was designed specifically for
highly-dimensional MC data sets and additionally optimized



BP-MLL CART-M TCART-
M

TCART-
MR

BR CC CLR HOMER ML-k NN RAkEL RF-PCT ECC

emotions 64 70 41 25 130 139 134 125 181 133 65 139
yeast 117 98 114 107 83 95 62 92 126 112 125 112
scene 159 117 104 79 77 75 93 95 161 70 135 80
enron 136 97 83 51 82 122 83 96 157 127 100 110
medical 153 133 124 99 108 96 69 62 117 89 85 103
flags 161 148 109 44 106 133 56 120 80 117 92 70
birds 192 139 117 88 82 114 71 101 106 93 91 42
genbase 175 133 96 90 80 38 96 115 164 46 114 31
CAL500 60 124 102 71 98 94 112 101 109 104 100 96
sum 1217 1059 890 654 846 906 776 907 1201 891 907 783

TABLE IV: Benchmark-based comparison of neural network approaches (columns 1-4) with the state-of-the art MC approaches.
Each value denotes the sum of ranking positions across 16 evaluation measures for given benchmark and MC method. Best
values for each benchmark are bolded. Gray background denotes statistical significance of the results difference between
TCART-MR and a given method according to 1-tailed t-test with significance level equal to 0.05.

BP-MLL CART-M TCART-
M

TCART-
MR

BR CC CLR HOMER ML-k NN RAkEL RF-PCT ECC

Hamming Loss 100 58 54 41 48 67 40 75 69 40 46 47
Accuracy 78 78 62 38 62 59 54 29 85 42 80 27
Precision 98 68 47 34 53 63 48 74 69 39 60 42
Recall 38 84 66 51 59 56 53 24 89 47 86 42
Subset Accuracy 84 61 55 37 49 50 56 40 70 28 63 27
F1 score 85 78 59 39 56 59 53 29 79 39 81 38
Micro-precision 104 46 54 35 59 66 58 82 51 50 26 57
Macro-precision 90 63 58 51 33 42 51 77 80 58 26 58
Micro-recall 43 80 65 54 57 55 53 24 93 47 80 43
Macro-recall 42 63 55 44 57 52 62 33 100 55 81 52
Micro-F1 78 81 66 46 56 64 51 31 88 40 59 35
Macro-F1 63 64 52 40 54 48 60 41 98 57 58 58
Ranking Loss 77 62 48 38 52 52 35 87 56 90 38 66
OneError 81 56 49 33 53 63 32 86 59 79 47 60
Coverage 74 59 52 43 55 57 39 88 51 90 27 66
Average Precision 82 58 48 30 43 53 31 87 64 90 49 65
sum 1217 1059 890 654 846 906 776 907 1201 891 907 783

TABLE V: Error measure-based comparison of neural network approaches (columns 1-4) with the state-of-the art MC
approaches. Each value denotes the sum of ranking positions across 9 benchmark sets for given evaluation measure and
MC method. Best values for each error measure are bolded. Gray background denotes statistical significance of the results
difference between TCART-MR and a given method according to 1-tailed t-test with significance level equal to 0.05.

for computational efficiency.

VI. CONCLUSIONS

This paper introduces and evaluates a new neural network
method (TCART-MR) for dimensionality reduction of the
input feature space in MC domain. The proposed approach
extends our previous MC algorithm TCART-M [20] by adding
a procedure of weight examination of the trained TCART-M
model so as to select the optimal number of the most relevant
input features. Once the subset of features is selected the train-
ing is repeated on the data with reduced input dimensionality.

TCART-MR was tested on a set of 9 well-established bench-
mark problems along two directions: quality of DR process
and the overall efficacy in MC domain. With respect to DR,
experimental results showed statistically relevant advantage
of TCART-MR over three competitive, widely-known DR

approaches: PCA - the most commonly used general purpose
DR method, MLSI and MDDM - the state-of-the-art input
reduction methods specifically developed for the MC task. In
terms of MC quality, TCART-MR not only outperformed its
predecessors (BP-MLL, CART-M and TCART-M), but also
achieved the best result in comparison with 8 other, state-
of-the-art MC approaches listed in the recent MC survey
paper [21]. Gaining the first place in the cumulative score,
which relies on ranking positions of a particular method for
all 9 benchmarks and against 16 variable evaluation measures,
confirmed universality and flexibility of the proposed method.

On a general note, the results suggest that a universal
MC approach suitable for a wide range of data sets and
error measures is unlikely to exist. Consequently, testing new
methods on a wide range of benchmarks and against various
error metrics is of particular value in this domain.



Another general conclusion refers to the specificity of
benchmark sets used in MC domain. In majority of the tested
cases removing over 40% of the least relevant (according
to TCART-MR) input features did not cause deterioration of
results and usually even led to their improvement. The reason
of this phenomenon is most probably the real-life origin of
the test data, which is not filtered in any specific way. In this
context the DR preprocessing step is of paramount importance.

Our current focus is on alternative, non-gradient optimiza-
tion methods (e.g. genetic algorithms, simulated annealing or
tabu search) for setting dimensionality threshold (ρ) in the
TCART-MR method, in place of the golden-section search
algorithm.

ACKNOWLEDGMENT

This work was supported by the National Science Centre,
Poland, grant number 2017/25/B/ST6/02061.

REFERENCES

[1] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas, “Multi-
label classification of music into emotions,” in Proceedings of the 9th
International Conference on Music Information Retrieval, Philadelphia,
USA, September 14-18 2008, pp. 325–330.

[2] C. G. M. Snoek, M. Worring, J. C. van Gemert, J. M. Geusebroek, and
A. W. M. Smeulders, “The challenge problem for automated detection of
101 semantic concepts in multimedia,” in ACM International Conference
on Multimedia, 2006, pp. 421–430.

[3] M. Boutell, J. Luo, X. Shen, and C. Brown, “Learning multi-label scene
classification,” Pattern recognition, vol. 37, no. 9, pp. 1757–1771, 2004.

[4] A. N. Srivastava and B. Zane-Ulman, “Discovering recurring anomalies
in text reports regarding complex space systems,” in IEEE Aerospace
Conference., 2005, p. 55–63.

[5] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Multilabel text classification
for automated tag suggestion,” in Proceedings of the ECML/PKDD 2008
Discovery Challenge, 2008, p. 75–84.

[6] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email
classification research,” in Prof. 15th European Conference on Machine
Learning, Pisa, Italy. Springer Berlin Heidelberg, 2004, pp. 217–226.

[7] J. P. Pestian, C. Brew, P. Matykiewicz, D. J. Hovermale, N. Johnson,
K. B. Cohen, and W. Duch, “A shared task involving multi-label
classification of clinical free text,” in Proceedings of the Workshop
on BioNLP 2007: Biological, Translational, and Clinical Language
Processing, ser. BioNLP ’07. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2007, pp. 97–104.

[8] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classi-
fication,” in In Advances in Neural Information Processing Systems 14.
MIT Press, 2001, pp. 681–687.

[9] I. T. Jolliffe, Principal component analysis. Springer, 1986.
[10] R. A. Fisher, “The use of multiple measurements in taxonomic prob-

lems,” Annals of human genetics, vol. 7, no. 2, pp. 179–188, 1936.
[11] H. Hotelling, “Relations between two sets of variates,” Biometrika,

vol. 28, no. 3/4, pp. 321–377, 1936.
[12] S. Tsuge, M. Shishibori, S. Kuroiwa, and K. Kita, “Dimensionality

reduction using non-negative matrix factorization for information re-
trieval,” in Systems, Man, and Cybernetics, 2001 IEEE International
Conference on, vol. 2. IEEE, 2001, pp. 960–965.

[13] H. Wang, C. Ding, and H. Huang, “Multi-label linear discriminant
analysis,” in European Conference on Computer Vision. Springer, 2010,
pp. 126–139.

[14] Y.-N. Chen and H.-T. Lin, “Feature-aware label space dimension reduc-
tion for multi-label classification,” in Advances in Neural Information
Processing Systems, 2012, pp. 1529–1537.

[15] S. Ji, L. Tang, S. Yu, and J. Ye, “Extracting shared subspace for
multi-label classification,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2008, pp. 381–389.

[16] Y. Zhang and Z.-H. Zhou, “Multilabel dimensionality reduction via
dependence maximization,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 4, no. 3, p. 14, 2010.

[17] K. Yu, S. Yu, and V. Tresp, “Multi-label informed latent semantic
indexing,” in Proceedings of the 28th annual international ACM SI-
GIR conference on Research and development in information retrieval.
ACM, 2005, pp. 258–265.

[18] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, p. 391, 1990.

[19] M.-L. Zhang, J. M. Peña, and V. Robles, “Feature selection for multi-
label naive bayes classification,” Information Sciences, vol. 179, no. 19,
pp. 3218–3229, 2009.
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