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Abstract—In 2006 Zhang and Zhou proposed a multilabel
classification model based on the MLP network, which was
subsequently improved by Grodzicki et al. This paper further
improves both these approaches by introducing a scaling param-
eter responsible for maintaining a balance between the impacts
of particular components of the MLP’s error function in the
training process. The newly-proposed parameter is autonomously
fine-tuned by the system in the nested cross validation process.
The proposed approach is tested on a set of well-established
benchmarks and demonstrates its superiority over the baseline
methods for 16 different error measures used in the experiments.
Furthermore, the method proves competitive to 12 other state-
of-the-art machine learning approaches which are used for
further comparisons. In the combined score composed of ranking
positions for all benchmarks and all error functions, the proposed
neural network system gains the leading position among all tested
methods.

I. INTRODUCTION

While the baseline formulation of a classification task
consists of assigning each sample to one of the available
categories (classes, labels), its multilabel version assumes that
a given sample may belong to more than one category, or
alternatively, be assigned more than one label from the set of
all available labels. Another layer of difficulty in the multilabel
classification formulation stems from the fact that the size of
the assigned subset of labels is usually not known a priori.

Numerous real-life applications of multilabel classification
(MC) led to development of various approaches to solving this
problem with the used of various machine learning techniques,
e.g. classifier chains [1], k-Nearest Neighbor [2], decision
trees [3], random forests [4], neural networks [5], [6], and
other.

In this paper, we enhance our previous approach [6] (de-
noted CART-M here), which relies on a specifically defined
error function and operates on a Cartesian set of available
labels, by introducing a scaling parameter D in the error
function formulation. Two approaches to selection of the best
value of D using nested cross validation are proposed and
experimentally evaluated. The first one determines the optimal
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value of D by a ranking involving 16 different evaluation (loss)
functions. The other one is dedicated to a particular evaluation
function which is used directly to determine the best value of
D.

Both the baseline version of CART-M [6] and its tuned
version TCART-M proposed in this paper are thoroughly
evaluated against 12 other approaches taken from a recent
survey paper [7] based on 5 widely-used benchmark problems
and 16 evaluation functions (leading to 80 evaluation measures
altogether).

The remainder of this paper is arranged as follows. Sec-
tion II presents the definition of MC and discusses its practical
relevance. Section III summarizes the comparative approaches
used in the experimental evaluation of the TCART-M. The
next section provides a description of the TCART-M method.
Section V is devoted to a presentation of the experimental
setup, in particular, the benchmark sets, evaluation measures
and parametrization of the methods used in the experiments.
Experimental results and their comparisons with other solu-
tions are presented in section VI. The last section is devoted
to conclusions.

II. MULTILABEL CLASSIFICATION PROBLEM

The problem of MC is defined as follows. Let X C R4
be d-dimensional instance space and Y = {y1,y2,...,y0}
denote the set of ) possible labels. The MC task is to learn
function h : X — 2Y, which to each object from the domain
of instances X assigns a corresponding subset of labels.

In practical situations the above definition is often imple-
mented as the task of finding function f : X x Y — R such
that

Vo, € X,Vy1 € Yy, 12 €Y, f(@p,y1) > f(ap,y2) (1)

Function f provides greater outputs for the elements belonging
to Y, than for those not belonging to Y),, where Y, C Y is a
set of labels assigned to object z),.



MC is widely applicable to various real-life tasks, including
text categorization (e.g. automatic tag suggestions for doc-
uments [8], articles [9] or e-mails [10]), multimedia files
classification (e.g. music [11], video [12] or images [13]
classification or tagging), or biology and bioinformatics (for
instance, in discovering genomic functions [14] or finding
probable diseases based on observed symptoms [15]).

III. STATE-OF-THE-ART APPROACHES

In recent years, a growing interest in MC has been observed
mainly due to its wide applicability in various domains and,
at the same time, an intrinsic complexity which makes the
problem challenging in both theoretical and practical dimen-
sions. In effect, numerous new approaches to MC relying
on various machine learning techniques were proposed and
proved successful in various application domains. This section
presents an overview of some of the relevant MC algorithms.
Please consult [16] and [7] for a more in-depth overview and
the source papers for a detailed description of the respective
methods.

Binary relevance (BR) [13] is one of the simplest algo-
rithms, which relies on splitting the MC learning problem with
@ classes into () independent binary classification problems.
For each of them the algorithm decides whether or not the
respective label is relevant for the given example.

The Classifier chaining algorithm (CC) [1] also relies on
@ binary classifiers but, unlike in BR, they are not pairwise
independent, but chained (put in a sequence). The feature
space of each classifier in a chain is extended by the results
obtained for all previously lined up classifiers.

Calibrated label ranking (CLR) [17] transforms the MC
learning problem into a label ranking problem. Label ranking
is created by means of pairwise comparison. The method was
further improved by using a more effective Quick Weighted
voting scheme (QWML) [18].

Hierarchy Of Multilabel classifiERs (HOMER) [19] is de-
signed mainly for large multilabel data sets and therefore
carefully optimized for computational efficiency. It first groups
similar labels into sets based on their distribution by means of
a balanced clustering algorithm similar to the k£ means algo-
rithm. Afterwards, these smaller sets are considered separately.

Multi-Label C4.5 (ML-4.5) [20] is an adaptation of a pop-
ular C4.5 classification tree algorithm with an appropriately
modified entropy formula and multiple labels (sets of labels)
stored in the leaves of a classification tree.

Multilabel k-nearest neighbors (ML-kNN) [2] is another ex-
ample of adaptation of a very popular classification algorithm
to a multilabel version. For each new object, its k nearest
neighbors among objects with known label sets are firstly
identified, and then, based on these label sets, the maximum
a posteriori principle is used to determine the set of labels for
the considered object.

Predictive clustering trees (PCT) [3] take a hierarchical
clustering approach - a root node represents one cluster with all
the data and down the tree the data is partitioned into smaller

clusters. The method constructs a tree using a standard top-
down induction of decision trees by maximizing the cluster’s
variance reduction. The prototype function returns a vector of
probabilities that an instance is labeled with a given label.

RAndom k-labELsets (RAKEL) [21] uses an ensemble ap-
proach. It randomly creates subsets composed of % labels and
uses them to train a label power-set classifier, which considers
each distinct combination of labels that exist in the training
set as a different class. Final prediction for a particular label
is obtained by a simple voting scheme based on decisions of
classifiers that contain this label.

Ensembles of classifier chains (ECC) [1] method uses
multiple instances of the CC algorithm (described above) with
random labels in a chain order and random subsets of training
samples. Predictions from all instances are ultimately summed
up to yield the final result.

Random forest of ML-C4.5 (RFML-C4.5) [4] and Random
forest of predictive clustering trees (RF-PCT) [7] are ensemble
methods that use random forests with ML-C4.5 and PCT
baseline classifiers, respectively. The predictions of baseline
classifiers are combined using one of standard voting schemes.

Generally speaking, all the above-mentioned methods can
be divided into 3 groups: problem transformation methods,
algorithm adaptation methods and ensemble methods. The first
category (which encompasses BR, CC, CLR, QWML and
HOMER methods) refers to algorithms which transform the
problem of MC into another well-studied machine learning
scenario. The algorithm adaptation methods (which include
ML-C4.5, PCT and ML-kNN approaches) adapt one of the
popular machine learning techniques to dealing with MC
data sets and MC problem formulation. The final group
(i.e. RAKEL, ECC, RF-MLC4.5 and RF-PCT methods) are
ensemble approaches which rely on independent running of
multiple instances of simple classifiers belonging to one of
the two previous groups on modified data sets and combining
the results based on some voting scheme. According to [7]
the latter group contains the most powerful approaches which
are generally superb over the single-classifier approaches.
Certainly these ensemble methods are also the most complex
in terms of parametrization and time requirements.

Surprisingly, there are not so many approaches to MC
employing neural networks. Probably the most popular one is
the Backpropagation for Multilabel Learning (BP-MLL) [5]
which relies on using a one-hidden layer perceptron with the
input layer equal to the number of attributes in a considered
data set with an additional bias neuron and the output layer
equal to the number of labels. Training is preformed with the
classic backpropagation algorithm with the error function of
the following form:
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where Y}, C Y is a set of labels assigned to the p-th training
sample x,,, Y, is a complementary set to Y, (i.e. Y, = Y'\Y,,),
ch is current output of the neuron associated with the g-th



label, m is the number of training instances. The particular
form of the error function (2) is intended to provide greater
outputs of neurons corresponding to the labels belonging to
Y, compared to the remaining ones (not from Y},). The set
of labels assigned to a given input sample x,, is defined by
the set of neurons whose outputs exceed a certain pre-defined,
input-dependent threshold ¢(x,,).

The BP-MLL approach was subsequently improved in [6]
by extending the form of the error function in a twofold way.
First of all, the values of (previously pre-defined) threshold
t(z,) were included in the network’s error function and made
independent directly of the input instance (they were assigned
to the output nodes, i.e. particular labels). Second of all, in the
error function comparisons between all ¢f values of categories
belonging to Y, (and to Y}, respectively) were taken into
account. These two modifications led to the following form
of the error function [6]:
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where for each category (each label) ¢ the two neurons indexed
by 2¢ and 27 + 1, respectively, represent the output of the
neuron corresponding to the ¢th label and the threshold value
associated with this output neuron (ith label).

IV. PROPOSED MODIFIED APPROACH

The above-described CART-M neural network multilabel
classifier was tested in [6] on the yeast genome data set [14]
(which is one of the standard benchmark problems in MC)
with the use of 3 evaluation (loss) functions. The results
appeared to be statistically significantly better than those of
the original BP-MLL model [5] and slightly better (with no
statistical relevance) than ADTBOOST.HM [22] and RANK-
SVM [14] models, being ones of the strongest approaches at
that time.

In this paper we propose further modification of the BP-
MLL and CART-M methods relying on further tuning of the
global error function of the MLP network. While the CART-
M model with the error function (3) clearly outperforms the
original formulation of BP-MLL, in the recent in-depth testing
of the CART-M statistical properties, it turned out that the
error function of the model is biased towards the newly-
added components at the expense of the baseline formulation
focusing on the e~ (e —e3) component. For this reason we
investigated the possibility of adding a scaling parameter D
to the error function formulation and its automatic tuning for a

given data set. In this respect, the tuned error function (denoted
by TCART-M) has the following form:
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Numerical results presented in section VI fully confirmed
the above-mentioned reasoning. In the extensive tests on 5
benchmark sets with 16 independently measured error (loss)
functions our new TCART-M method appears not only to be
stronger than CATR-MC and BP-MLL, but is also comparable
or better (in average) than the competitive state-of-the-art
approaches which use various machine learning techniques as
presented in section III.

V. EXPERIMENTAL SETUP

The proposed TCART-M method was compared with 14
different approaches briefly described in Section III: BR [13],
CC[1], CLR [17], QWML [18], HOMER [19], ML-C4.5 [20],
PCT [3], ML-kNN [2], RAKEL [21], ECC [1], FML-C4.5 [4],
RF-PCT [7], BP-MLL [5] and CART-M [6]. The results for
the first 12 methods were obtained from an experimental-based
survey paper [7] and the remaining two approaches (BP-MLL
and CART-M) were implemented by the authors according to
their descriptions presented in [S] and [6], respectively.

A. Parameter selection

In order to make comparison fair, all parameters of the
proposed modified TCART-M method were set according to
the original selection proposed in [6]. In particular, the hidden
layer size was not optimized and contained 40 neurons. The
input layer was equal to the number of attributes, plus an
additional bias neuron, and the output layer was composed
of 2Q) neurons, where @) is the number of possible labels.
Following [6], the learning rate was set to 0.05, the weight
decay to 0.5 and the number of training epochs was equal to
100. In all experiments, a 10-fold cross validation (CV) was
applied.

The value of a scaling parameter D in (4) was cho-
sen using a nested CV technique among the following
16 candidate values: D.unq = {0.25,0.5,...,1.75,2} U
{2.5,3,3.5,4,5,6,8,10}. Two different measures of efficiency
of a given selection of D in the inner (nested) CV loop
were proposed and tested in the experiment: g-general and
i-individual.

g: the optimal value of D is determined based on the ranking
which involves all 16 evaluation measures. More precisely,
for each error measure, the scores for all 16 candidate
values d; € D¢qnq are calculated and ranked by sorting in
the descending order starting from the best one. Afterwards,



for each d; the positions in all rankings (for all 16 error
measures) are summed up and the one with the lowest result
is selected as D.

i: for a given error measure (one of 16 available) the optimal
value of D is chosen directly based on comparison of
results obtained for this pre-selected evaluation measure.

The former evaluation method (TCART-Mg) is universal and
independent of the choice of an evaluation measure that may
be used in practical situations later on. The latter approach
(TCART-Mj) is dedicated to a particular error measure and
optimized for the subsequent method’s use with that exact
measure (though, “by chance”, may be well tuned for other
measures, as well).

B. Benchmark problems

The method was tested on 5 widely-used multilabel classi-
fication benchmark problems. These data sets have various
characteristics and, in particular, differ in the numbers of
instances, numbers of labels and average labels’ cardinalities.
The data come from three real-life domains: text catego-
rization, multimedia (images and music) categorization and
biology. Table I summarizes the basic parameters of the used
data sets. The Yeast data set [14] is one of the most popular

Name ‘ Domain ‘ Instances ‘ Attributes ‘ Labels ‘ Card.

yeast biology 2417 103 14 4.24

scene multimedia 2407 294 6 1.07

emotions | multimedia 593 72 6 1.87

enron text 1702 1001 53 3.38

medical text 978 1449 45 1.25
TABLE 1

BASIC PARAMETERS OF THE USED BENCHMARK DATA SETS: DOMAIN,
NUMBER OF INSTANCES, NUMBER OF ATTRIBUTES, NUMBER OF LABELS
AND AVERAGE CARDINALITY OF THE LABELS.

benchmarks in the MC domain. The data represents genes,
each of which can be associated with a selection of 14
biological functions (labels).

Scene data set [13] instances are images of landscapes which
should be annotated with the subsets of the following set of
labels: {mountain, beach, field, fall-foliage, sunset, urban}.

Emotions [11] is a data set containing music extracts. The
goal is to annotate each of them with a subset of the following
six emotions: {happy-pleased, angry-aggressive, sad-lonely,
amazed-surprised, quiet-still, relaxing-calm}.

The Enron data set [10] is related to e-mail categorization.
Objects are e-mails from Enron Corporation written by 150
people and marked by 53 labels. The labels are grouped into
4 main categories: coarse genre, forwarded messages, primary
subjects, and messages with emotional tone.

Finally, the medical data set [15] is composed of pieces of
text which briefly describe patient’s symptoms history. The
labels that need to assigned are potential diseases listed in the
International Classification of Diseases [23].

All 5 the above-mentioned benchmark problems are very
popular within the multilabel classification research commu-
nity and often used for comparing different MC approaches.

In particular, they were used in [7] which is the source of
comparative results used in this paper to assess the quality of
the proposed TCART-M algorithm.

C. Evaluation measures

In order to make the comparison fair and as thorough as
possible, we partly follow the experimental setup proposed
in [7] and, instead of applying one particular error measure,
propose the use of an ensemble of 16 error functions. These
error measures can be roughly divided into three groups. For
the sake of space limits we will restrict our description to
one example measure per group. Please refer to [7] or any
machine learning book for the definitions and interpretations
of the remaining ones. In the following description, N denotes
the number of test instances, x; is the 7th test instance and Y;
is the true set of labels assigned to this sample.

The first group includes example-based measures, which
rely on calculating the difference between the actual and
predicted values separately for each test sample and then
calculating the average value across the whole test set. The
most common example-based measure is precision defined as:

|h(z:) NY;|
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where h(z;) denotes the set of labels assigned to x; by
the classifier being assessed. Precision can be interpreted as
the average (across the whole test set) fraction of correctly
assigned labels. In the experiments, 6 example-based measures
were used: Hamming loss, accuracy, precision, recall, FI
score and subset accuracy.

Error measures in the second group are calculated by first
evaluating the classifier’s performance separately on each
label, and then returning the mean value across all labels.
Therefore, these are the label-based measures. One of the
representatives of this category is macro precision defined by
the following formula:

Q

macro_precision = —_— (6)
Q Z tpj + fpg

where () denotes the number of all possible labels, ¢tp; and
fp; are respectively the numbers of true positives and false
positives obtained by the classifier for label j across the whole
test set. Intuitively, macro-precision measures the ability of a
classifier to not assign a label in the cases in which it should
actually not be assigned. There are 6 label-based measures
used in the experiments: micro-precision, micro-recall, micro-
F1, macro-precision, macro-recall and macro-Fy.

The third group is composed of ranking-based measures,
which for each tested sample build a ranking of labels which
are presumably the best suited for this sample. This ranking
is compared with a ground-truth ranking and certain aspects
of these comparisons across all test samples are measured and



BP-MLL | CART-M TCART- TCART- BP-MLL | CART-M TCART- TCART-
Mg Mi Mg Mi
Hamming Loss 0.203 0.201 0.187 0.186 Hamming Loss 0.217 0.197 0.198 0.198
Accuracy 0.570 0.547 0.579 0.580 Accuracy 0.535 0.510 0.510 0.509
Precision 0.652 0.666 0.682 0.683 Precision 0.637 0.700 0.706 0.704
Recall 0.730 0.663 0.700 0.703 Recall 0.711 0.595 0.596 0.601
Subset Accuracy 0.299 0.291 0.331 0.332 Subset Accuracy 0.143 0.168 0.160 0.161
F1 score 0.660 0.632 0.660 0.663 F1 score 0.017 0.600 0.618 0.621
Micro-precision 0.657 0.685 0.701 0.695 Micro-precision 0.626 0.709 0.709 0.706
Macro-precision 0.657 0.685 0.700 0.696 Macro-precision 0.464 0.544 0.533 0.541
Micro-recall 0.728 0.658 0.698 0.706 Micro-recall 0.702 0.592 0.590 0.590
Macro-recall 0.714 0.650 0.686 0.703 Macro-recall 0.468 0.374 0.359 0.369
Micro-F1 0.690 0.671 0.699 0.693 Micro-F1 0.661 0.645 0.644 0.643
Macro-F1 0.676 0.658 0.685 0.690 Macro-F1 0.441 0.405 0.383 0.406
Ranking Loss 0.160 0.160 0.145 0.142 Ranking Loss 0.174 0.164 0.165 0.164
OneError 0.290 0.275 0.251 0.253 OneError 0.237 0.227 0.225 0.224
Coverage 1.748 1.766 1.694 1.658 Coverage 6.441 6.285 6.305 6.265
Average Precision 0.799 0.803 0.818 0.812 Average Precision 0.754 0.767 0.766 0.767
TABLE II TABLE III

COMPARISON OF RESULTS FOR THE emotions BENCHMARK SET
(AVERAGED OVER 30 TRIALS). THE BEST RESULTS FOR EACH
EVALUATION MEASURE ARE BOLDED.

evaluated. As an example let’s look at the average precision
measure defined by the following formula:

Z |Y\ Z rankf ranks(zi,q) ™

where f is a prediction function and ranky is the f-
based ranking defined in a way that for any labels ¢, s if
f(@i,q1) > f(xi,q2) then ranks(x;,q1) < ranks(z;,gz).
Li(q) = {¢ €Y, : ranks(x;,q") < ranks(x;,q)} is a set
of labels from Y; that are ranked above a given label ¢ € Y;.
The average_precision measures the average fraction of the
labels that are ranked above a given label ¢ € Y; that, in fact,
are in Y;. Four ranking-based measures were applied in the
experiments, namely average precision, one-error, coverage
and ranking loss.

15 measures (all except coverage) yield values within the in-
terval [0, 1]. In the case of Hamming loss, one-error, coverage
and ranking loss, the smaller the value, the better the method’s
performance. For all the remaining metrics, the greater the
value, the better the performance.

average_precision( f

VI. EXPERIMENTAL RESULTS

The experiments were arranged along the two main goals:
(1) comparison of the proposed modified method TCART-Mg/i
with the methods that inspired the introduced modifications,
i.e. BP-MLL and CART-M, and (2) comparison of the neural
network-based methods (the ones mentioned in (1) above) with
other machine learning approaches.

For the purpose of neural network models comparisons, 30
independent tests were run for each model, each benchmark
problem, and each of the 16 error functions.

Tables II and III show the results obtained for emotions and
yeast benchmarks, which appeared to be the two extreme cases
from the point of view of the proposed TCART-M method.

COMPARISON OF RESULTS FOR THE yeast BENCHMARK SET (AVERAGED
OVER 30 TRIALS). THE BEST RESULTS FOR EACH EVALUATION MEASURE
ARE BOLDED.

In case of yeast benchmark (which appeared to be the least
fitted to the proposed modifications) the modified methods
TCART-Mg and TCART-Mi accomplished the results slightly
inferior to the baseline formulation, being in average weaker
than CART-M by 0.78% and 0.06%, respectively.

On the other hand, for the emotions benchmark, for all
16 evaluations measures, the mean results of both modified
approaches outperformed the baseline method by a clear
margin - the average improvement across all measures is
equal to 5.45% and 5.91% for TCART-Mg and TCART-Mj,
respectively. For the remaining 3 data sets (scene, enron,
medical), the improvement of the proposed system is also
clear, though not as striking as in the case of the emotions
data set. The summary of results is presented in Table IV. All
in all, out of 80 tested cases the TCART-Mg and TCART-
M; appeared to be superior to CART-M in 55 and 60 of
them, respectively. Based on 1-tailed t-test with significance
level equal to 0.05 respectively 42 and 47 of these results are
statistically significant. For the sake of space limits detailed
p-values are not presented. All of them are in the range of
0.0001 to 0.26. Normal distribution of data was checked by
Shapiro-Wilk test.

In the other set of experiments, a comparison between neural
network approaches and the ones listed in section III was
performed based on average ranking positions. Namely, for
a given benchmark set, for each tested algorithm, separate
rankings for all error measures were constructed and then
positions in these rankings were summed up. The best possible
sum of positions was 16 (i.e. the Ist position for each of 16
evaluation measures), the worst possible outcome was equal
to 256 (the 16th position in each of the 16 measure-related
rankings). The summary of results is presented in Table V. It
can be seen in the table that, for the emotions data set, the
proposed methods are the best ones with more than 30 points
ahead of the remaining methods. Also for the enron bench-



TCART-Mg TCART-Mi
Benchmark Mean D Mean D
emotions 16 (16) | 6.7 | 16 (16) | 6.1
yeast 4(2) 2.0 7 4) 2.5
scene 12 (9) 5.1 12(11) | 6.3
enron 11 (8) 4.7 13 (9) 4.5
medical 12 (7) 2.0 12 (7) 2.1

TABLE IV

FOR EACH METHOD, THE LEFT COLUMN PRESENTS A NUMBER OF
EVALUATION MEASURES (OUT OF 16) FOR WHICH PROPOSED
MODIFICATIONS (RESPECTIVELY TCART-Mg AND TCART-M;i) YIELDED
BETTER MEAN RESULTS THAN CART-M. THE VALUE IN PARENTHESES
DENOTES THE NUMBER OF STATISTICALLY SIGNIFICANT RESULTS
(1-TAILED T-TEST WITH SIGNIFICANCE LEVEL EQUAL TO 0.05). FOR
BOTH METHODS, THE RIGHT COLUMN PRESENTS THE AVERAGE VALUE OF
D SELECTED BY NESTED CV (CART-M METHOD CORRESPONDS TO THE
CASEOF D =1).

mark, both modifications are placed in the top-3 positions. The
worst performance can be observed for the medical data set
where they are located at 10th and 11th position, respectively.
However, in the overall measure obtained by summing the
ranking points over all 5 benchmarks and all 16 error
functions, the proposed algorithms gained the top two
positions. The detailed results regarding the average values
of particular measures of the tested methods are presented
in Tables VI, VII, VIII, IX and X - each devoted to one
benchmark problem.

One of the key aspects of the proposed method is intro-
duction of scaling parameter D and its tuning by means of
a nested CV procedure. The average values assigned to this
parameter and its standard deviations across all 30 runs are
shown in Table IV. Analysis of results suggests that there is
some correlation between the range of achieved improvement
(compared to CART-M) and selection of D. For the two data
sets, yeast and medical which were the least favorable for
our method D values are small, between 1.0 and 3.0. For
the remaining benchmarks D is usually between 4.0 and 6.0
or even above 6.0 for the emotions data set (please note that
this is the set for which the striking improvement in all 16
measures was achieved). Moreover, the situations in which D
was selected lower than 1.0 were not noticed (even though
the values of 0.25, 0.5 and 0.75 were available for selection).
Furthermore, only occasionally D = 1.0 was chosen (in
that case TCART-M becomes equivalent to CART-M). The
above observations confirm our intuition that the impact of
the new components in the error function (in CART-M) is too
strong and should be reduced (divided by D > 1.0). Another
conclusion stemming from the results is the advantage of the
TCART-Mi over TCART-Mg variant, which could be, to a
large extent, expected as unlike the latter approach, which is
optimized for a particular error measure, the former method
takes a much universal approach with no pre-defined error
measure in mind. However, despite its advantage, the TCART-
M: is not necessarily the best option in practice, in particular,
when the error measure to be used is not known in advance.
In such cases the value of D fine-tuned for a certain error
measure may prove ineffective when the assessment function

is changed.

VII. CONCLUSIONS

In 2006 Zhang and Zhou [5] proposed a neural network-
based approach to the multilabel classification problem. The
proposed model was later improved by Grodzicki et al. [6]
thanks to restructuring the error function form by means of
adding specific cartesian-like (pair-based) components. This
paper further improves the model by introducing a scaling
parameter which is autonomously fine-tuned by the system in
the nested cross validation process. Two ways of measuring
the efficacy of this internal scaling parameters in the inner
(nested) CV loop are proposed, referred to as g (general) and ¢
(individual). Both variants of the proposed method were tested
on a set of 5 well-established benchmarks and proven for an
ensemble of 16 different error measures. The experimental
results confirmed that both new approaches (TCART-Mg and
TCART-Mi) in most of the cases outperform the previous
versions proposed in [5] and [6].

Except for the above-described tests, the proposed methods
were also experimentally compared with 12 popular multilabel
classification methods based on the results published in a
recent survey [7]. The results are very promising, in several
combinations of a benchmark set and error measure the newly-
proposed neural models are clearly the most efficient, in many
other cases, they are in the top selection. In the combined score
obtained by summing the ranking positions in all 5 bench-
marks and 16 evaluation measures, the proposed algorithms
are located in the first two places. While definitely further
comparisons and more in-depth investigations are necessary
to fully confirm the strength of the proposed models, based
on the hitherto results, it is safe to say that the neural
network based TCART-M method introduced in this paper is
a viable alternative to other state-of-the-art machine learning
approaches.
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emotions yeast scene enron medical sum
TCART-M:i (34) CLR (72) BR (78) TCART-Mi (74) QWML (76) TCART-Mi (942)
TCART-Mg (41) BR (99) CC (79) BR (84) HOMER (83) TCART-Mg (1026)
BP-MLL (72) HOMER (110) RAKEL (79) TCART-Mg (86) CLR (90) CLR (1056)
RF-PCT (72) TCART-Mi (115) ECC (90) CLR (89) ML-C4,5 (94) BR (1152)
CART-M (79) CC (115) CLR (92) CART-M (106) RF-PCT (106) HOMER (1166)
RFML-C4,5 (90) CART-M (117) TCART-Mi (103) RF-PCT (110) RAKEL (120) RF-PCT (1166)
ML-C4,5 (102) QWML (123) TCART-Mg (106) HOMER (119) CC (124) CART-M (1176)
PCT (154) TCART-Mg (132) HOMER (107) ECC (127) BR (137) CC (1306)
HOMER (164) ECC (132) CART-M (124) RFML-C4,5 (137) ECC (137) RAKEL (1338)
BR (178) RAKEL (135) QWML (133) CC (146) TCART-Mi (145) ECC (1350)
RAKEL (184) BP-MLL (138) RF-PCT (155) RAKEL (151) TCART-Mg (148) QWML (1380)
CLR (185) RF-PCT (140) ML-k NN (182) QWML (165) ML-k NN (149) RFML-C4,5 (1536)
CC (189) ML-k NN (145) RFML-C4,5 (185) ML-C4,5 (171) CART-M (162) ML-C4,5 (1554)
ECC (189) RFML-C4,5 (180) BP-MLL (208) BP-MLL (174) RFML-C4,5 (176) BP-MLL (1586)
QWML (193) ML-C4,5 (194) ML-C4,5 (216) ML-k NN (195) BP-MLL (201) ML-k NN (1826)
ML-k NN (242) PCT (218) PCT (233) PCT (232) PCT (215) PCT (2104)
TABLE V

METHODS SORTED BY RANKING SUMMED ON EVALUATION MEASURES DIVIDED FOR BENCHMARK PROBLEMS. VALUES IN BRACKETS ARE SUM OF
METHOD’S POSITIONS ACROSS EVALUATION MEASURES. PROPOSED MODIFICATIONS ARE BOLDED.

[9]

[10]

(11]

[12]

BP- CART- TCART- TCART- BR CC CLR QWML HOMER ML- PCT ML-k RAKEL ECC RFML- RF-

MLL M Mg Mi C4.5 NN C4.5 PCT
Hamming Loss 0203 0.201 0.187 0.186 0257 0.256 0257 0254 0361 0247 0267 0.294 0282  0.281 0.198  0.189
Accuracy 0.570 0547 0579  0.580  0.361 0356  0.361 0373 0471 0536 0448 0319 0419 0432 0488 0.519
Precision 0.652  0.666 0.682  0.683 0550  0.551 0.538  0.548 0509  0.606  0.577 0.502  0.564 0.580 0.625  0.644
Recall 0.730  0.663  0.700  0.704 0409 0397 0410 0429 0775 0.703 0534 0377 0491 0.533  0.545  0.582
Subset Accuracy 0299 0291 0.331 0332 0.129 0.124 0.144 0.149 0.163 0277 0223 0.084 0208 0.168 0272  0.307
F1 score 0.660 0.632  0.660 0.663 0.469  0.461 0.465  0.481 0.614  0.651 0.554 0431 0.525 0556 0583  0.611
Micro-precision 0.657 0.685  0.701 0.695  0.684 0.698 0.685 0.680  0.471 0.607 0.607 0.584 0586 0579 0.783  0.783
Macro-precision 0.657 0.685 0.700 0.697  0.721 0.581 0.677  0.660 0464 0.602 0628 0518 0.547  0.531 0.828  0.802
Micro-recall 0.728  0.658  0.698  0.706 0406  0.393 0409 0431 0.782 0.712 0539 0376 0489 0.531  0.551 0.589
Macro-recall 0.714  0.650 0.686  0.703 0378  0.364  0.381 0398 0775  0.702 0533 0334 0462 0508  0.532  0.569
Micro-F1 0.690  0.671 0.699 0.693 0509 0503 0512 0528 0.588  0.655 0571 0.457 0533 0554  0.647  0.672
Macro-F1 0.676  0.658  0.684  0.690  0.440 0420 0443 0458 0570 0.630 0.568 0385 0483 0.500 0.620  0.650
Ranking Loss 0.160  0.160  0.145  0.142 0246 0245 0264 0.331 0297 0210 0270  0.283  0.281 0310  0.153  0.151
OneError 0290 0275 0251 0253 038 0376  0.391 0.391 0.411 0347 0386 0406 039 0426 0277 0.262
Coverage 1.748 1.766 1.694  1.658 2307 2317 2376 2807 2634 2.069 2356 2490 2465 2.619 1.801 1.827
Average Precision | 0.799  0.803  0.818 0.812 0.721 0724  0.718 0.679  0.698  0.759 0.713 0.694 0.713  0.687 0.812 0812

TABLE VI
THE AVERAGE RESULTS FOR THE emotions BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.

BP- CART- TCART- TCART- BR CC CLR QWML HOMER ML- PCT ML-k RAKEL ECC RFML- RF-

MLL M Mg Mi C4.5 NN C4.5 PCT
Hamming Loss 0217 0.197 0.198 0.198 0.190 0.193  0.190  0.191 0207 0234 0219 0.198  0.192  0.207 0205  0.197
Accuracy 0535 0510 0509 0508 0520 0.527 0.524 0523 0559 0480 0440 0492  0.531 0.546 0453 0478
Precision 0.637  0.700 0.706 ~ 0.704 0.722  0.727 0719 0718 0.663  0.620  0.705  0.732  0.715 0.667  0.738  0.744
Recall 0711 0595 0596  0.602 0591  0.600 0.601 0.600  0.714  0.608  0.490 0.549 0.615 0.673 0491 0.523
Subset Accuracy 0.143  0.168  0.160  0.161 0.190 0239 0.195 0192 0213  0.158 0.152  0.159  0.201 0215  0.129  0.152
F1 score 0.017  0.600 0.618  0.621 0.650  0.657 0.655 0.654 0.687 0.614 0578 0.628  0.661 0.670  0.589  0.614
Micro-precision 0.626  0.709 0.709 0.707 0.733  0.726  0.729  0.727 0.647 0.618 0.698 0.736  0.720 0.662  0.747  0.755
Macro-precision 0.464 0544  0.533  0.541 0.628  0.602  0.614 0.614 0471 0377 0479  0.600 0480 0391 0533  0.674
Micro-recall 0.702 0592 0590 059 0587 0588 0595 0595  0.702 0.603 0492 0543  0.602 0.655  0.491 0.521
Macro-recall 0468 0374 0359 0369 0355 0357 0.361 0.361 0466 0375 0269 0308 0352 0388  0.257  0.286
Micro-F1 0.661 0.645 0.644 0.643 0652 0.650 0.655 0.654 0.673 0.610 0577 0.625 0.656 0.658 0.593  0.617
Macro-F1 0.441 0405 0.383 0406 0392 039 0392 0394 0447 0370 0293 0336 0359 0350 0.283  0.322
Ranking Loss 0.174  0.164  0.165 0.164 0.164 0.170 0163 029 0205 0225 0.199 0172 0259 0224 0.173 0.167
OneError 0237 0227 0225 0224 0236 0268 0.229 0233 0248 0312 0264 0234 0254 0249 0250 0.248
Coverage 6.441 6.285 6305 6272 6330 6439 6286 8.659 7.285 7.105 6.705 6414 7983  7.153 6276 6.179
Average Precision | 0.754  0.767 0766 ~ 0.767  0.768  0.755  0.768  0.698 0.740 0706 ~ 0.724 0758 0.715 0.734  0.749  0.757

TABLE VII

THE AVERAGE RESULTS FOR THE yeast BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.

I. Katakis, G. Tsoumakas, and 1. Vlahavas, “Multilabel text classification
for automated tag suggestion,” in Proceedings of the ECML/PKDD 2008
Discovery Challenge, 2008.

B. Klimt and Y. Yang, The Enron Corpus: A New Dataset for Email
Classification Research. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2004, pp. 217-226.

K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas, “Multi-
label classification of music into emotions,” in Proceedings of the 9th
International Conference on Music Information Retrieval, Philadelphia,
USA, September 14-18 2008, pp. 325-330.

C. G. M. Snoek, M. Worring, J. C. van Gemert, J. M. Geusebroek, and
A. W. M. Smeulders, “The challenge problem for automated detection of
101 semantic concepts in multimedia,” in ACM International Conference

[13]

[14]

[15]

[16]

on Multimedia, 2006, pp. 421-430.

M. Boutell, J. Luo, X. Shen, and C. Brown, “Learning multi-label scene
classification,” Pattern recognition, vol. 37, no. 9, pp. 1757-1771, 2004.
A. Elisseeff and J. Weston, “A kernel method for multi-labelled classi-
fication,” in In Advances in Neural Information Processing Systems 14.
MIT Press, 2001, pp. 681-687.

J. P. Pestian, C. Brew, P. Matykiewicz, D. J. Hovermale, N. Johnson,
K. B. Cohen, and W. Duch, “A shared task involving multi-label
classification of clinical free text,” in Proceedings of the Workshop
on BioNLP 2007: Biological, Translational, and Clinical Language
Processing, ser. BioNLP *07. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2007, pp. 97-104.

M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algo-



(17]

(18]

(19]

BP-  CARI- TCART- TCART- BR CC CLR QWML HOMER ML- PCT MLk RAKEL ECC RFML- RF-

MLL M Mg Mi C4.5 NN C45  PCT
Hamming Loss 0272 0090 0090 0089 0079 0082 0080 0081 0082 0.141 0129 0099 0.077 008 0116 0094
Accuracy 0357 0695 0705 0695 0689 0723 0686 0683 0717 0569 0538 0629 0734 0735 0388  0.541
Precision 0361 0715 0724 0728 0718 0758 0714 0711 0746 0592 0565 0661 0768 0770 0403  0.565
Recall 0799 0735 0768 0774 0711 0726 0712 0709 0744 0582 0539 0655 0740 0771 0388  0.541
Subset Accuracy | 0.058 0.636 0625 0627 0639 0685 0633 0630 0661 0533 0509 0573 0.694 0665 0372 0518
F1 score 0479 0715 0732 0730 0639 0685 0633 0630 0661 0533 0509 0573 0.694 0.665 0372 0518
Micro-precision 0387 0762 0744 0759 0843 0814 0835 0832 0804 0619 0512 0691 0831 0773 0960  0.930
Macro-precision | 0437 0780 0770 0780 0844 0817 0835 0832 0807 0635 0682 0784 0835 0785 0963 0919
Micro-recall 0796 0725 0758 0771 0694 0708 0695 0.692 0727 0570 0521 0634 0721 0751 0572 0.523
Macro-recall 0796 0734 0765 0777 0703 0716 0704 0701 0734 0573 0529 0647 0727 0757 0381 0533
Micro-F1 0516 0742 0750 0748 0761 0757 0758 0756 0764 0593 0516 0661 0772 0762 0717  0.669
Macro-F1 0539 0749 0760 0750 0765 0762 0762 0759 0768 0596 0593 0692 0777 0770 0514  0.658
Ranking Loss 0.180 0076 0072 0074 0.060 0064 0065 0.103 0119 0169 0.174 0093 0.104 0.103 0079 0.072
OneError 0560 0231 0229 0229 0180 0204 0190 0.93 0216 0394 0389 0242 0.197 0213 0232 0210
Coverage 0982 0464 0442 0430 0399 0417 0423 0631 0739 0945 0964 0569 0.635 0625 0495 0461
Average Precision | 0.675 0864 0867 0866 0.893 08381 088 0864 0848 0751 0745 0851 0862 0856 0862 0.874

TABLE VIIT
THE AVERAGE RESULTS FOR THE scene BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.

BP-  CARI- TCART- TCART- BR CC CLR QWML HOMER ML- PCT MLk RAKEL ECC RFML- RF-

MLL M Mg Mi C4.5 NN C45  PCT
Hamming Loss 0250 0047 0047 0046 0.045 0064 0048 0048 0051 0053 0058 0051 0.045 0049 0047 0.046
Accuracy 0202 0430 0459 0450 0446 0334 0459 0388 0478 0418 0.196 0319 0428 0462 0374 0416
Precision 0214 0680 0678 0679 0703 0464 0650 0624 0616 0623 0415 0587 0708 0652 0.690  0.709
Recall 0.849 0484 0535 0539 0497 0507 0557 0453 0610 0487 0229 0358 0469 0560 0398 0452
Subset Accuracy | 0.002 0.133  0.134 0.137 0149 0000 0.117 0097 0.45 0.140 0002 0062 0136 0131 0124 0.131
F1 score 0315 0536 0571 0572 0582 0484 0600 0525 0.613 0546 0295 0445 0564 0602 0505 0.552
Micro-precision 0.187 0713 0680 0694 0721 0492 0652 0687 0597 0613 0601 0684 0743 0642 0768 0738
Macro-precision | 0255 0294 0277 0289 0258 0260 0205 0242 0241  0.142 0023 0170 0222 0249 0245 0233
Micro-recall 0.821 0450 0506 0510 0464 0472 0532 0438 0585 0440 0246 0353 0435 0532 0366 0422
Macro-recall 0505 0267 0274 0272 0120 0146 0139 0120 0.63 0.107 0030 0075 0097 0.129 0082  0.100
Micro-F1 0302 0551 0580 0578 0564 0482 0585 0535 0591 0512 0349 0466 0548 0582 0496  0.537
Macro-F1 0274 0273 0272 0274 0143 0153 0149 0.143 0.167 0.115 0026 0087 0.115 0.140 0.102 0.122
Ranking Loss 0165 0109 0091 0089 0084 0083 0.078 0.177 0.83 0.120 0.114 0093 0283 0238 0083 0.079
OneError 0793 0235 0225 0227 0237 0238 0231 0269 0314 0309 0392 0280 0290 0247 0219 0221
Coverage 16,845 15824 13.684 13248 12.530 12437 11763 22746 24.190 17.010 14920 13.181 30509 27.760 12485 12.074
Average Precision | 0335  0.667 0685 0686 0693 0695 0.699 0604 0604 0629 0546 0635 0522 0576 0.680  0.698

TABLE IX
THE AVERAGE RESULTS FOR THE enron BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.

BP- CARI- TCART- TCART- BR CC  CLR QWML HOMER ML- PCT MLk RAKEL ECC RFML- RF-

MLL M Mg Mi C4.5 NN C45  PCT
Hamming Loss 0651 0020 0020 0022 0077 0077 0017 0012 0012 00i3 0023 00i6 0012 0014 0022 0014
Accuracy 0020 0340 0354 0374 0206 0211 0656 0658 0713 0730 0228 0528 0673 0611 0250  0.591
Precision 0020 0382 0403 0340 0211 0217 0695 0697 0762 0797 0285 0575 0730 0.662 0284  0.635
Recall 0829 0345 0360 0351 0735 0754 0795 0801 0760 0740 0227 0547 0679 0642 0251  0.599
Subset Accuracy | 0.000 0293 0300 0302 0000 0000 0486 0480 0610 0.646 0177 0462 0607 0526 0216 0538
F1 score 0056 0356 0372 0362 0328 0337 0742 0745 0761 0768 0253 0560 0704 0652 0267 0616
Micro-precision 0031 0841 0833 0823 0225 0229 0669 0667 0807 079 0826 0807 0.881 0.834 0884  0.885
Macro-precision | 0226 0519 0515 0521 0399 0391 0288 0285 0287 0263 0018 0267 0269 0266 0.190  0.269
Micro-recall 0825 0353 0359 0384 0725 0739 0782 0787 0742 0720 0227 0522 0.600 0.624 0237  0.569
Macro-recall 0.622 0516 0509 0519 0423 0428 0307 0324 0282 0249 0022 0.163 0.183 0.179 0040 0.176
Micro-F1 0058 0491 0495 0521 0343 0350 0721 0722 0773 0756 0356 0634 0714 0714 0374  0.693
Macro-F1 0244 0516 0510 0515 0361 0371 0281 028 0282 0250 0020 0.192 0210 0203 0058 0.207
Ranking Loss 0451 0182 0153 0146 0021 0019 0028 0027 0090 0048 0.104 0045 0159 0.152 0028 0.024
OneError 0963 0521 0422 0455 0135 0123 0168 0.65 0216 0.198 0612 0279 0312 0315 0243 0.174
Coverage 21.143 9404 8247 7814 1610 1471 2036 1832 5324 3033 5813 2844 8520 7994 1.889  1.619
Average Precision | 0.106 0520 0609 0590 0896 0901 0864 0862 078 0823 0522 0784 0676 0684 0817 0868

TABLE X

THE AVERAGE RESULTS FOR THE medical BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.
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