Kubkowski, M., M. Łazȩcka, and J. Mielniczuk. 2020.
“Distributions
of a General Reduced-Order Dependence Measure and Conditional
Independence Testing.” In
Lecture Notes in Computer
Science, 692–706. Springer International Publishing.
https://doi.org/10.1007/978-3-030-50436-6_51.
Łazecka, M., and J. Mielniczuk. 2022.
“Squared Error Based
Shrinkage Estimators of Discrete Probabilities and Their Application to
Feature Selection.” Statistical Papers.
https://doi.org/10.1007/s00362-022-01308-w.
Łazȩcka, M., and J. Mielniczuk. 2020.
“Analysis of
Information-Based Nonparametric Variable Selection Criteria.”
Entropy 22 (9): 974.
https://doi.org/10.3390/e22090974.
Łazęcka, M., and J. Mielniczuk. 2021.
“Multiple Testing of
Conditional Independence Hypotheses Using Information-Theoretic
Approach.” In
Torra v., Narukawa y. (Eds) Modeling Decisions
for Artificial Intelligence. MDAI 2021. Lecture Notes in
Computer Science. Vol. 12898. Springer, Cham.
https://doi.org/10.1007/978-3-030-85529-1_7.
Łazęcka, M., J. Mielniczuk, and P. Teisseyre. 2021.
“Estimating
the Class Prior for Positive and Unlabelled Data via Logistic
Regression.” Advances in Data Analysis and
Classification, 1–30.
https://doi.org/10.1007/s11634-021-00444-9.
Teisseyre, P., J. Mielniczuk, and M. Łazȩcka. 2020.
“Different
Strategies of Fitting Logistic Regression for Positive and Unlabelled
Data.” In
Lecture Notes in Computer Science, 3–17.
Springer International Publishing.
https://doi.org/10.1007/978-3-030-50423-6_1.