2018/2019🔗

Konrad Lompert🔗

Date: 2019 June 11th

Title: Bi-Hamiltonian structures induced by Invariant Nijenhuis Tensors on homogeneous spaces

Abstract: Studies of invariant Nijenhuis (1,1)-tensors on a homogeneous space G/K of a reductive Lie group G allowed us to prove Liouville integrability of the geodesic flow on two series of homogeneous spaces of compact Lie groups for two kinds of metrics: the normal metric and new classes of metrics related to decomposition of G to two subgroups. (A joint work with Andriy Panasyuk.)

In this talk I will overview used methods and discuss possible generalizations based on the use of weak Nijenhuis operators.

Marcin Zubilewicz🔗

Date: 2019 June 4th

Title: Curvature of unimodular webs (continuation)

Marcin Zubilewicz🔗

Date: 2019 May 28th

Title: Curvature of unimodular webs

Abstract: A smooth k-web is a family of k distinct smooth foliations whose leaves intersect generically. Objects of this kind have been thoroughly studied in the setting of algebraic and symplectic geometry. During the talk we will focus on the less-traveled route: webs in the geometry of volume-preserving maps.

These unimodular webs possess nontrivial local structure, which manifests itself in the existence of curvature -- a symmetric 2-tensor covariant with respect to volume-preserving web-equivalences, named after its classical counterpart defined by Thomsen and Blaschke in the 1920s. This structure can also be described by means of a natural affine connection determined uniquely by the structure of a given web and a choice of the volume form on the ambient space.

Our main goal is to construct this connection, and to relate its curvature to the curvature of the web in order to establish another criterion for its triviality.

Asahi Tsuchida🔗

Date: 2019 March 12th

Title: On frontals for sub-Riemannian manifolds

Mariusz Zając🔗

Date: 2019 March 5th

Title: Homogeneous polynomials in some discrete problem

Vincent Grandjean🔗

Date: 2019 January 15th

Title: Equisingularity at infinity of real polynomials

Abstract: In this work, jointly with N. Dutertre, given a real polynomial function F in n variables, we are looking at the regularity of the functions "total curvature" and a "absolute total curvature" attached to F. The function "total curvature" is defined as the integral, over any given level of F, of the Gauss-Kronecker curvature of the given level. The function "absolute total curvature" is given by the integral, over the given level, of the absolute value of the Gauss-Kronecker curvature over the given level. The Total absolute curvature of a Given Level is related to Gauss-Bonnet formula; We show an equisingularity result of this nature; both functions "total curvature" are continuous at any regular value which satisfies Malgrange Condition.

Wojciech Kryński🔗

IM PAN

Date: 2018 October 30th

Title: Geometric approach to the multipeakon solutions to the Camassa-Holm equation

Abstract: Multipeakons are special solutions to the Camassa-Holm equation. They can be described by an integrable geodesic flow on a Riemannian manifold. Singular points of the Riemannian metric correspond to collisions of the multipeakons. We consider a bi-Hamiltonian formulation of the system and exploit its first integrals in order to analyse geodesics near a singular point of the metric. We present a novel approach to the problem of the dissipative prolongations of multipeakons after the collision time.

Jun-Muk Hwang🔗

Korea Institute for Advanced Study, Seoul

Date: 2018 October 16th (at 4 pm) poster

Title: Rigidity of Legendrian singularities

Abstract: Let (M, D) be a holomorphic contact manifold, i.e. a complex manifold M of dimension 2m+1 equipped with a holomorphic contact structure D.

An m-dimensional complex analytic subvariety V in M is called a Legendrian subvariety if the smooth locus of V is tangent to D. A Legendrian singularity means the germ of a Legendrian subvariety at a point.

We discuss conditions under which a Legendrian singularity becomes a cone singularity and explain how they are related to the geometry of Fano contact manifolds.

Shyuichi Izumiya🔗

Sapporo

Date: 2018 October 2nd

Title: Singularities of Cauchy horizons in Lorentz-Minkowski space