2020/2021🔗
Mariusz Zając🔗
Date: 27th of April 2021
Title: Kilka uwag o prawie okresowych funkcjach i ciągach
Stanisław Janeczko🔗
Date: 20th of April 2021
Title: Osobliwości funkcji quasi-okresowych i prawie okresowych
Michał Zwierzyński🔗
Date: 17th of November 2020
Title: Generyczność zbiorów afinicznie lambda-równoodległych oraz zbioru mierzącego stałą szerokość owali
Stanislaw Janeczko🔗
Date: 10th of November 2020
Title: Differential forms on varieties, symplectic and affine invariants
Marcin Zubilewicz🔗
Date: 27th of October 2020
Title: On the curvature of bilagrangian manifolds
Abstract: Each bilagrangian manifold, i.e. a symplectic manifold (M, ω) equipped with two transversal Lagrangian foliations F,G, carries a certain natural symplectic connection which extends both Bott's connections corresponding to F,G respectively. This connection played a major part in the successful attempt of H. Hess (1980) to generalize several different quantization schemes in mathematical physics (including the geometric quantization of Kostant-Souriau) with a single geometric theory, which has spawned considerable interest in bilagrangian structures in general. The aim of the talk is to briefly describe the curvature of such connections, and to present a result allowing to interpret it in terms of symplectic areas of some particular 2-dimensional surfaces embedded in M, obtained using a pseudo-Riemannian analogy (formalized by F. Etayo and R. Santamaria, 2000) that equates bilagrangian manifolds with para-Kähler manifolds, together with the notion of holonomy of unimodular 2-webs.